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Abstract 

Impact-based forecasting is recognized as crucial for effective flood risk management since it 

translates meteorological forecasts into actionable information about potential impacts on 

critical facilities, residents, and infrastructure. Despite its growing relevance, including impacts 

within existing flood early warning systems remains in its infancy with limited operational 

implementations and few performance evaluations.  

This study has developed an Impact-based flood forecasting system for the Geul catchment in 

the GEB framework, using eight historic operational ECMWF ensemble and control 

precipitation forecasts to simulate the 14 July 2021 flood event. By using these different 

forecasts at different lead times as input, the SFINCS hydrodynamic model simulated flood 

maps for the eight lead times ranging from 88 hours till 5 hours before the event. 

Simultaneously, a study baseline is created by using the ECMWF’s ERA5 reanalysis dataset in 

the framework. To improve the computation efficiency, this study has introduced an innovative 

approach where percentiles are calculated for each ensemble to describe the ensemble’ 

uncertainty. Each ensemble percentile and control-based flood map is then evaluated against 

observations and empirical data, whereafter it is combined with vulnerability and exposure data 

to assess flood impact distributions, probabilities and hits of critical facilities.  

Up to 88 hours before the event, the results demonstrate adequate performance for the 90th and 

95th ensemble percentiles in simulating flood extents across the catchment (CSI of ~0.6), while 

the performance decreases for lower percentiles by an increasing lead time. Although the 

simulated flood map still show room for improvement due to missing hydraulic structures and 

survey-based limitations, the developed model chain proves capable for capturing flood impacts 

as the event approaches. This is further underpinned by the detailed Valkenburg evaluation, 

which showed stronger performances for the flood extent simulations (CSI of >0.7) and for 

predicted impacts on a building level across the different forecasts and lead times. By 

integrating ensemble precipitation forecasts within the framework, this study offered valuable 

insights for the representation of forecast uncertainty and forms a proof-of-concept for future 

impact-based early warning applications. Moreover, it addresses the potential of probabilistic 

flood impact forecasting, while it emphasizes the need for further refinements and stakeholder 

engagement to improve the operational relevance inside the Geul basin.  
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1. Introduction 

Globally, natural disasters are increasing in frequency and severity, leading to increasing 

economic losses and population displacements (EM-DAT & CRED / UCLouvain, 2024; Merz 

et al., 2020). Climate change amplifies these natural disasters resulting in more severe impacts 

(Bolan et al., 2023; Kreibich et al., 2022). In 2024, the 1.5 °C global warming threshold was 

exceeded for the first time, pushing climate goals further out of reach (Copernicus, 2025). This 

development of climate change will put mankind more at risk, resulting in even more severe 

impacts in the future. Simultaneously, together with global population growth and related 

urbanization, the vulnerability for natural hazards further increases (Dodson et al., 2020; 

Norrman, 2023). While different regions in the world faces different sets of natural hazards, 

flooding remains the most devastating (Rentschler et al., 2022). Between 1994 and 2013, floods 

affected globally nearly 2.5 billion people and caused more than $40 billion in annual losses 

(WMO, 2024). The number of people living in flood-prone areas rose by 24% between 2000 

and 2015, and without action flood impacts will worsen (Trogrlić et al., 2022; WMO, 2024). 

Moreover, flood risk is shaped by diverse meteorological and hydrological drivers that differ 

across time and place (Merz et al., 2020; Piadeh et al., 2022). Ignoring the interaction of flood 

drivers can lead to a significant underestimation of the flood risk (Kumbier et al., 2018), 

especially if global extreme precipitation become more intense and frequent (Tradowsky et al., 

2023).  

In response to previous catastrophic flood events and climate change projections, global 

attention has shifted towards improved preparedness to reduce (future-) flood risk. In the last 

decades, Early Warning Systems (EWS) (UNDRR, 2023) have become a crucial component of 

the Disaster Risk Reduction (DRR) cycle. They support timely preparedness and response by 

integrating flood hazard, exposure, and vulnerability information (IPCC, 2012; Trogrlić et al., 

2022).  Growing attention has been giving to such non-structural approaches due to their rapid 

implementation, limited spatial requirements, and cost-effectiveness (Berndtsson et al., 2019; 

Piadeh et al., 2022).  

In this context, the UNDRR recently launched the ‘Early Warnings for All’ initiative, aiming 

to ensure that every country has access to EWS by the end of 2027. The main objective is to 

build more resilience through societies, with the goal to save lives and livelihoods (UNDRR, 

2023). Flood Early Warning Systems (FEWS) have proven to be a viable measure in mitigating 

flood risk by combining the scientific understanding of the natural processes that generates 

flood hazards, past experiences with flood hazards, and monitoring of current flood conditions 

(Merz et al., 2020; Perera et al., 2019; Ringo et al., 2023). The combination of factors made it 

possible to forecast the likelihood of precipitation, discharges, and water levels at different lead 

times and levels of confidence (Merz et al., 2020). In the end, when warnings become more 

precise, they result in a diminished number of false alarms, which increases the trust residents 

have in the forecasts (Fernández-Nóvoa et al., 2024; Lindenlaub et al., 2024). 

However, to have an effective FEWS, it must be people-centred and must integrate the 

following four pillars: (i) Knowledge of the risk faced, (ii) Available technical monitoring and 

warning services, (iii) Dissemination of meaningful warnings to those at risk, and (iv) Public 

awareness and preparedness to act. Failure of one of these elements can mean failure of the 

entire FEWS chain (Fernández-Nóvoa et al., 2024; UNDRR, 2008). 

One of the issues in current FEWS is communicating the warning so that it will trigger 

responses (Islam et al., 2025). De Perez et al. (2022) address the need for more focus on the 

communication and response capability in FEWS initiatives, as some of the deadliest and 
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costliest flood disasters of this century have happened despite these events were forecasted with 

a FEWS (e.g. Davidson & Ni, 2024; Endendijk et al., 2023; Khalid et al., 2015; Latona et al., 

2024; Thieken et al., 2023). 

Moreover, another important aspect is that current FEWS focus on flood hazard forecasting 

instead of including risk or impact information, such as expected amount and distribution of 

physical damage, consequences to important assets and humans, disruption of community 

services or financial loss (Merz et al., 2020). The providence of information on the forecasted 

impacts is important as it supports the translation towards response and action (Busker et al., 

2025).  

Building on this, a key limitation of current FEWS is the lack of communication and the absence 

of impact-based information, which has a large societal importance as this impedes an effective 

response. To bridge this gap, the integration of Impact-based Forecasting (IbF) into existing 

FEWS has been proposed (WMO, 2015; Busker et al., 2025). As a result, an Impact-Based 

Flood Forecast and Warning Services (IBFFWS) enhance public response, as people are more 

likely to act when provided with detailed information about the impacts of a hazard (Lindenlaub 

et al., 2024). This shifts the focus from forecasting what the weather will be to what it will do, 

which will heighten the response rate and communication to all the involved stakeholders (Merz 

et al., 2020; Potter et al., 2025). However, the effectiveness of IBFFWS has never been 

objectively tested and modelled as it comes with significant operational challenges, such as data 

scarcity of impacted areas in order to address vulnerability or exposure (Merz et al., 2020). 

Therefore, the primary objective of this study is the following: 

To develop and test an Impact-Based Flood Forecast and Warning Services (IBFFWS), wherein 

ensemble precipitation forecasts are incorporated into a SFINCS hydrodynamic model.  

Another objective of this study is to implement ensemble forecasting within IBFFWS to 

investigate the added value of these forecasts compared to ERA5 reanalysis data or 

deterministic forecasts from ECMWF. Ensemble forecasts need to be implemented as they treat 

the uncertainty from the source leading to more information on uncertainty, resulting in 

different outcomes (Boelee et al., 2018). These different outcomes can improve 

communication, as a range of possibilities are clarified. Therefore, ensemble forecasts are 

shown to have higher value for decision-making (Verkade & Werner, 2011). In the end, the 

ensemble forecasts will be used to predict impacts in a probabilistic way.   

Based on the defined research gap and the main objectives, early warning systems can be 

enhanced by providing impact-based forecasts to support the trigger of effective actions. To 

increase the knowledge base around IBFFWS, this study will investigate the development of 

such an updated system in the Geul catchment. The following research question (MQ) has been 

formulated: 

How could Impact-based Forecasts (IbF) from the hydrodynamic SFINCS model have been 

used to trigger effective early-warnings and actions, incorporating associated uncertainty for 

the 2021 flood in the Geul basin?  

To develop an IbF for the Geul basin, the forecasts leading to the flood in July 2021 will be 

used to forecast flood maps. These forecasted flood extents will be compared with the available 

observed data and then translated from flood extents and depths to impacts, including an 

estimation of uncertainty. Additionally, to answer the research question, the study is guided by 

different sub-questions:  
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RQ1: How well do historic operational ensemble and deterministic forecasts relate to the 

observed precipitation patterns and totals of the July 2021 flood event, compared to 

ERA5 reanalysis data? 

RQ2: What is the quality of flood forecasts from SFINCS for the July 2021 event at 

multiple lead times and how do variations in forecast data affect the outcomes of the 

SFINCS model? 

RQ3:  How does the predicted flood impact vary across different rainfall forecasts and lead 

times, and what is the added value of using ensemble-based predictions for 

estimating local damages per function and area? 

This study provides a state-of-the-art modelling IBFFWS chain, which can provide more 

information to enhance the communication and flood preparedness in regions. The Geul 

catchment serves as a practical example and proof-of-concept to highlight the potential of the 

study setup in forecasting and visualizing flood impacts based on local impact dynamics. 

Moreover, it provides lessons that contribute to the improved management of flood risk 

reduction in a transboundary region, where the system offers a practical contribution to the 

added complexity of cross-border flood management. 

Ultimately, this study focuses only on developing an IbF for the Geul catchment. This includes 

the implementation and preparation of different precipitation ensemble forecasts within the 

SFINCS hydrodynamic model, the translation from flood extent to impact, the evaluation of the 

flood maps with the observed flood extent and flood depth, and the quantification of 

uncertainties within the precipitation ensemble forecasts and within the impact forecasts.  

Further analysis and usage of the impact forecasts regarding communication, warning levels 

and response towards stakeholders is not considered in this study. This study is limited to 

providing insights in the usage of ensemble forecasts in hydraulic modelling and the translation 

of flood extents into impacts. 

Moreover, in this study the used models were not calibrated from scratch, as a functioning and 

validated setup was provided for this research. As a result, only minor adjustments in SFINCS 

were made to improve the accuracy of the outcomes and to ensure consistency with the 

implemented rainfall forecasts. These adjustments involved aligning the coordinate system and 

refining the channel network representation to better match the spatial characteristics. This 

means that no additional calibration of model parameters was conducted to focus on testing the 

model’s response to different forecast scenarios.  

In addition, although one of the main reasons of this research is that weather events become 

more extreme due to climate change, climate change is not considered in this thesis. This study 

only applies historical precipitation ensemble forecasts and does not include climate scenarios.
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2. State of the art 
This chapter provides a literature review of the state of the art in flood forecasting systems, 

hydrological- and hydrodynamic models, and in ensemble weather forecasting. By examining 

and elaborating the mentioned research gaps, this chapter forms the foundation for further 

investigation and supports the stated research question and objectives. Therefore, the research 

gaps in current early warning systems are examined, providing an overview of the state of the 

art in the field. Additionally, the state of the art in hydrological- and hydrodynamic models, as 

well as in ensemble weather forecasting, are analysed to enhance the understanding of the key 

components used in developing the model-chain for impact-based forecasting. 

2.1. Key characteristics of existing Flood Early Warning Systems 

(FEWS) 

Within FEWS a sequence of steps take place from the moment first signs of a flood are 

recognized (t0), to the moment that a flood occurs ‘Low point in route cut by flood water’ (ti) 

(Esm et al., 2010). This timeline is also called the maximum potential warning time, and an 

example is illustrated in Figure 1. FEWS come into play in the first part (t0 till tw) of the 

timeline (depicted in Figure 1). During this phase, measured or forecasted hydrometeorological 

data is collected and evaluated to determine the flood severity. Meteorological institutes often 

provide information about (forecasted or measured) precipitation events, which will be 

translated to discharge or water level thresholds by a FEWS (Esm et al., 2010). A FEWS often 

combines hydrological models for the land-phase (rainfall runoff processes) with hydraulic 

models to simulate the propagation of precipitation events towards high discharges in streams 

(Arduino et al., 2005). The phase between the threat recognition (t0) and ‘Low point in route 

cut by flood water’ (ti) in Figure 1 is called the lead time (Esm et al., 2010). During the lead 

time warnings are given, which result in response and actions.

Figure 1: Flood timeline. The sequence of consecutive steps from recognition to estimation of severity to decision-making to 

response to action (Esm et al., 2010). 
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Therefore, current FEWS require information inputs such as real-time rainfall information, 

high-resolution numerical weather forecasts, and the operation of hydrological model systems 

(Collier, 2007). However, the content of the elements can vary within FEWS. In fact, the 

difference in content is dependent on the type of hazard. Typical triggers for flood events are 

short-duration rainfall, high-intensity rainfall, long-duration rainfall, rain on saturated soils, 

snowmelt, or a combination of rainfall and snowmelt (Merz et al., 2020). Hence, pluvial and 

flash floods do need more accurate short-term rainfall information due to the local rainfall 

peaks. These extreme peaks develop on different space-time scales compared to fluvial floods. 

As a result, dependent on the trigger of a flood hazard, the input information and the type of 

hydrological or hydrodynamic model can differ in order to capture the flood hazard on time 

(Merz et al., 2020).  

Furthermore, dependent on the type of flood, the warning lead times vary with lead times being 

less than an hour for flash floods and extending up to several weeks for fluvial floods (Merz et 

al., 2020). In addition, these lead times depend on various catchment characteristics (e.g. 

catchment lag time, catchment size) (Jain et al., 2017; Piadeh et al., 2022).  

2.1.1 Component I: Weather forecasting 

In general, current FEWS can be divided into two parts: meteorological forecasting and 

hydrological forecasting (Das et al., 2022). Where weather is the state of the atmosphere over 

a shorter time span, meteorological forecasting models try to predict the future state of the 

atmosphere. Out of a number of meteorological factors, temperature, pressure, wind, humidity, 

and precipitation have the greatest influence on a location’s weather (Kumar & Sharma, 2024). 

Many FEWS depend on meteorological inputs from observation stations or radar 

measurements. These measurements, however, provide forecasts for short lead times (1-2 days 

ahead). In order to provide early warnings for severe flood events, it is more useful to use 

medium-range weather forecasts (2-15 days ahead) to allow sufficient preparation time for civil 

protection authorities (Cloke & Pappenberger, 2009; Das et al., 2022).  

To produce medium-ranged weather forecasts, meteorological variables from numerical 

weather predictions (NWP) are used. NWP is a method to predict likely future states of the 

atmosphere, by solving a set of differential equations based on the current atmospheric 

conditions (Cloke & Pappenberger, 2009; Teja et al., 2023). The forecasts with NWP can be 

generated in two ways: Deterministic, and Probabilistic. A deterministic forecast provides one 

specific outcome from many scenarios, typically with short lead times and without considering 

associated uncertainties (Teja et al., 2023).  

Although deterministic forecasts are based on the best available initial atmospheric conditions, 

they may still under- or overestimate actual outcomes. As a result, the usage of these forecasts 

poses a challenge in communicating warnings or decision making in flood risk management. 

To overcome these limitations, the probabilistic or ensemble forecasts are developed to 

incorporate the uncertainties by simulating multiple equally probable future states of the 

atmosphere (Cloke & Pappenberger, 2009; Das et al., 2022; Pappenberger et al., 2019; Teja et 

al., 2023). By creating different forecast with slightly different initial conditions and 

parametrization compared to the best initial state, named as the control forecast, different 

forecasts are initialized with an Ensemble Prediction System (EPS). The multiple simulations 

run in parallel, where the varied initial conditions lead to perturbed forecasts. The divergence 

of the control forecast with the perturbed forecasts gives an estimate of the uncertainty and 

spread of the weather prediction on a particular day, making ensemble prediction systems 

valuable for risk-based decision-making (ECMWF, 2008). 
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Nonetheless, ensemble weather forecasts are complex and characterized by uncertainty 

primarily due to the chaotic nature of atmospheric dynamics. Even small perturbations in the 

initial conditions can lead to different atmospheric future states. This effect is known as the 

“butterfly effect”.  To represent this uncertainty in flood forecasting, multiple NWP ensembles 

can be forced through a single hydrological model, or a single NWP ensemble can be coupled 

with multiple hydrological models (Das et al., 2022). 

In Europe, most meteorological weather forecasts are used from the European Centre for 

Medium-Range Weather Forecasts (ECMWF) (Das et al., 2022). To use ensemble forecasts of 

ECMWF, the forecasts are initialized every six hours but released according to a fixed 

dissemination schedule (ECMWF, 2025a). This dissemination schedule delays user access and 

consequently reduces the effective lead time. 

This study focuses on applying historical operational ensemble precipitation forecasts from 

ECMWF to evaluate their effectiveness in predicting the 2021 flood event. Unlike hindcasts, 

which are retrospective simulations, operational forecasts reflect real-time conditions and 

model configurations used at the time. These forecasts are used to force a single hydrological 

model with predicted rainfall inputs. 

2.1.2 Component II: Hydrological forecasting 

The second part of current FEWS is forcing the meteorological forecast data into a hydrological 

model. In general, hydrological models are utilized to describe parts and interactions of the 

hydrological cycle. As models are a representation of the reality, different hydrological models 

describe processes and interactions of the hydrological cycle in catchments differently 

(Pechlivanidis et al., 2013). Because of the simulation of natural processes, there is no single 

best model to use. Rather, there are many solutions, depending on the objective and needed 

complexity (Ogden, 2020). Additionally, while the hydrologic cycle is global in nature, large-

scale meteorological conditions are processed on a local scale. This specific catchment response 

makes hydrology highly heterogeneous over space and time, which is also called the uniqueness 

of place in hydrologic modelling (Beven, 2000). Ultimately, the goal of hydrological models is 

to support and improve decision-making in water resource management and flood risk 

management in river catchments (Pechlivanidis et al., 2013). 

2.1.3 Component III: Communication, Response & Early action 

A common approach in medium-range flood forecasting, is by forcing a hydrological model 

with an ensemble of NWP to estimate the probable future hydrological conditions. In this case, 

the hydrological model predicts whether predefined hydrological exceedance thresholds are 

surpassed with a certain probability (Alfieri et al., 2019). When a threshold is surpassed, 

warnings can be given to the public or to crisis managers who make decisions whether to 

respond. Predefined meteorological and hydrological warning levels are often depicted in color 

codes as illustrated in Figure 2. These warning levels can be connected to predefined actions, 

outlined in crisis management plans (Busker et al., 2025).  

 

 

 



   Chapter 2  State of the art 
 

21 

 

Subsequently, if authorities have decided to warn the public, ideally warnings should be 

communicated in a way that the response is correct and that people act on the warning (Trogrlić 

et al., 2022). For instance, a warning can include evacuation of people and property or 

implementing measures such as barriers.  

Due to the usage of forecasts and models in different components, a key challenge in the 

development and implementation of a FEWS is that uncertainty can propagate further to the 

next component. By going through all FEWS’ components, the cumulative uncertainty 

propagation can have effects on the systems output (Parker & Priest, 2012). For example, 

uncertainty in the collection and preparation of the rainfall ensemble forecasts could lead to 

‘missed’ forecasts where rainfall thresholds are not surpassed, while observed water levels did 

surpass the water level thresholds. On the other hand, uncertainty can also lead to forecasts that 

did surpass the thresholds, without actual exceedance of thresholds within the observations 

(Busker et al., 2025; Cloke & Pappenberger, 2009; Merz et al., 2020). These so-called false 

alarms and misses have effects on the trust that people have in current FEWS. The propagation 

of uncertainty can therefore undermine the credibility of FEWS (Sawada et al., 2022). 

  

Figure 2: Conceptual representation of a FEWS. Rainfall ensemble forecasts (left) are used in hydrological models to predict 

river water levels (middle). Warnings are issued if a share of the ensembles exceed the predefined thresholds, which result in 

triggering (sometimes predefined) early actions (right) (Obtained from Busker et al. (2025)). 
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2.2. Major challenges in current FEWS and in developing Impact-

based Forecasting Warning Systems (IBFFWS) 

Although current EWS have a proven substantial monetary benefit against the damages of 

natural hazards (Pappenberger et al., 2015), these systems are based on the ability of people to 

use the given information and take effective action (WMO, 2015). Moreover, current FEWS 

are used to predict the magnitude, location, and timing of potential damaging events (Merz et 

al., 2020). 

The study of Busker et al. (2024) concludes that current FEWS can effectively trigger early 

action up to 2-3 days in advance across much of Europe, while the value of the forecasts largely 

disappears at a 5-day lead time. However, despite the focus on developing the hydro-

meteorological monitoring and forecasting systems (Fernández-Nóvoa et al., 2024; Najafi et 

al., 2024; Pappenberger, 2019; Sawada et al., 2022), the decline of uncertainty is not a sole 

prerequisite for reducing the impacts of flood hazards. Consequently, an accurate and timely 

warning does not guarantee safety of life or prevention of major economic disruption (WMO, 

2015). 

For example, during the floods of July 2021 in Northwestern Europe a lot of people were not 

warned or aware of the flood severity, despite having FEWS in place. Although the risk was 

acknowledged and forecasted, the final pillar ‘Public awareness and preparedness to act’ for a 

good functioning FEWS was not sufficient (Busker et al., 2025; Endendijk et al., 2023). 

Moreover, post-event analysis of the flood event has revealed that FEWS solely focusing on 

hazard metrics, such as maximum local rainfall depths or maximum water levels, resulted in 

misinformed actions, delayed responses, and at times, no action at all (Najafi et al., 2024).  Here 

the communication of flood warnings to first responders and the public appears challenging 

(Busker et al., 2025; Merz et al., 2010; Parker & Priest, 2012).  

Furthermore, the rapid assessment of impacts immediately after an event or the provision of 

impacts prior to an event tend to be developed without the involvement of relevant stakeholders: 

the information sharing and interaction between stakeholders during an event is often not well 

integrated (Merz et al., 2020; Potter et al., 2025). Moreover, for governments, economic sectors 

and the public to take appropriate action, they must know how hazards might impact their lives, 

livelihoods, and the economy (WMO, 2015). 

In addition, interviewees in the study of Busker et al. (2025) stressed that estimates of flood 

areas are highly needed to improve the effectiveness of early actions. As the flood estimations 

can be combined with overlays of exposed buildings, land covers, and critical infrastructure, 

flood impacts can be mapped (Najafi et al., 2024). However, a key factor contributing to 

inaction is ineffective communication of the forecasts. Interviewees stressed that the 

information needs for emergency management are often not met. Moreover, interviewees 

emphasized the challenge of interpreting probabilistic forecasts, resulting in the preference for 

using deterministic forecasts to take action (Busker et al., 2025). Operational services such as 

safety regions, fire brigades, police, and ambulance address the need for impact-based 

communication, as they underscored that their knowledge about potential impacts of 150 mm 

or 200 mm rainfall events remains limited (Busker et al., 2025; Lindenlaub et al., 2024; Najafi 

et al., 2024). Therefore, a multi-disciplinary approach with all the stakeholders is needed to 

heighten the response rate, information sharing, and mitigate the impacts of natural hazards. 

To forecast flood maps and associated flood impacts, current FEWS are often extended with 

the integration of additional components, for instance, depth-damage curves or probabilistic 

multivariable vulnerability models. A major challenge in this approach lies in producing timely 
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and accurate estimates of water levels and flood areas, which are essential to determine impacts 

(Najafi et al., 2024). This is achieved either by fast hydrodynamic simulation approaches or by 

using predefined flood maps (Merz et al., 2020; Najafi et al., 2024). 

2.2.1 Including hydrodynamic models in FFEWS 

As hydrological models are utilized for the simulation of the interaction processes in the 

hydrologic cycle, one key aspect in the behaviour of large-scale river basins that has been 

partially neglected in large-scale hydrological models is river hydrodynamics (Paiva et al., 

2011). Often hydrological models use simplified flow routing models which do not include 

dynamical processes that occur in rivers such as backwater and floodplain storage effects. These 

effects play significant roles in fluvial systems such as in biogeochemical processes, feedback 

between land, atmosphere and water (Paiva et al., 2011). The simulation of flood inundation 

provides the basis for the representation of all these processes (Paiva et al., 2011). Using 

hydrodynamic flow routing (inclusion of dynamical processes) provide also model outputs such 

as river stages, flow velocities and slopes (Paiva et al., 2011).  

Within this context, one-dimensional (1D) and two-dimensional (2D) hydrodynamic models 

are often used to simulate flood behavior. First, 1D models assume flow varies only in the 

longitudinal (streamwise) direction, neglecting lateral and vertical variations. Water levels are 

calculated using discharge-water level relationships or flood wave propagation equations. Some 

models can partially account for transverse (lateral and vertical) flow effects by including 

different cross sections. After predicting the water levels at fixed points in the river, 1D models 

can extrapolate the flood depths at the floodplains based on an elevation map (Hamdi et al., 

2019). 

In contrast, 2D models compute depth-averaged water surface elevations and fluxes over a two-

dimensional grid. As a result, these models require more detailed topographic data, roughness 

data, and boundary condition data. Hence, 2D approaches better capture spatial variability in 

flood modelling, offering a more accurate estimate of flood risk (Hamdi et al., 2019). 

Therefore, 2D Hydrodynamic models have been in common use for several decades worldwide, 

for the simulation of flood events for engineering, planning and risk assessment studies 

(Nicholas, 2003). As these models rely on numerically solving partial differential equations to 

spatially evaluate flood extents (Leijnse et al., 2021; Paiva et al., 2011), this is much more 

computationally intensive compared to hydrological models. Currently, different studies tried 

to improve the time expensive models by simplifying the partially differential equations or by 

using Machine Learning methods (Haces-Garcia et al., 2024; Leijnse et al., 2021). 

In the context of the UNDRR mission to create FEWS in all countries by 2027, the focus of this 

study is to apply a 2D SFINCS hydrodynamic model together with ensemble forecasts to 

generate flood map forecasts. In fact, current FEWS use hydrological models to warn people 

based on hydrological thresholds. In contrast, this study uses ensemble weather forecasts in a 

2D hydrodynamic model together with a hydrological model, which initializes the hydrological 

processes to forecast flood extents and depths. 

2.2.2 Estimating impacts in FFEWS with depth-damage curves 

To complement an IBFFWS, depth-damage curves can be utilized to translate simulated flood 

water levels into direct economic damages. However, having adequate depth-damage curves to 

describe the vulnerability on a local scale is a significant challenge that stands in the way of 

flood risk modelers (Pita et al., 2021).  
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Specifically, damage assessments are currently limited in evaluating the impacts from flooding 

due to the absence of a comprehensive global database of flood damage functions that can 

translate flood water levels into direct economic damage (Huizinga et al., 2017; Merz et al., 

2010). Moreover, the evaluation and reliability of the damage assessments are complicated due 

to the scarcity of reported impact data at the local scale (Merz et al., 2020; Potter et al., 2025). 

To overcome the lack of site-specific functions, modelers usually adopt functions from other 

locations, extrapolate from limited flood damage data, or conduct expert-judgement surveys 

(Huizinga et al., 2017; Pita et al., 2021). Additionally, the damage fractions in the curves are 

intended to span from zero (no damage) to one (maximum damage). Therefore, it is necessary 

for each location to normalize the curve based on the local maximum damage (Huizinga et al., 

2017). Furthermore, the technical report of Huizinga et al. (2017) presented depth-damage 

functions for 214 countries with the following damage categories: Residential buildings, 

commerce, industry, transport, infrastructure, and agriculture. 

Ultimately, this study will apply depth-damage curves in order to translate flood levels into 

direct damages. Since the development of IBFFWS is still in its infancy, the majority of current 

FEWS are focusing on extending their system with qualitative or quantitative impact 

assessments (Busker et al., 2025; Merz et al., 2020). These assessments are commonly based 

on direct damages to the residential and commercial sector (Huizinga et al., 2017; Merz et al., 

2020). In contrast, impacts on critical infrastructure or indirect impacts are rarely considered 

(Merz et al., 2020).  

However, to act effectively and to communicate as early as possible to the local public, it is 

important to know what the impacts would be for emergency services, critical infrastructure 

and facilities. Hence, the development of IBFFWS faces further challenges related to the 

definition of relevant impact information. Reasonably, the forecasted impact still must be 

aligned with the responsibilities, knowledge and requirements of the involved stakeholders 

(Busker et al., 2025; Merz et al., 2020). Subsequently, it is important to effectively share the 

propagation and representation of uncertainties within the IbF (Najafi et al., 2024).  

Despite the challenges of extending current FEWS with IbF, the future thresholds (Figure 2) 

must be based on the expected impact on people and their assets (Busker et al., 2025). 

Therefore, there is a need for developing and testing impact-based forecast systems with 

different impact-based thresholds (WMO, 2015; Red Cross Red Crescent Movement & Climate 

Centre (RCCC), 2020; Merz et al., 2020). Multiple IbF initiatives are already launched by 

WMO (2021). 
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3. Study area 
The study takes the transboundary Geul catchment as a case study for the implementation of an 

IBFFWS. The river is located between 50°39′ to 50°54′N latitude and 5°65′ to 6°6′E longitude 

and flows through Belgium, Germany and Limburg (Southern province of the Netherlands), as 

illustrated in Figure 3. First, the Geul catchment is described (section 3.1), then a description is 

given of the EWS in the Netherlands (section 3.2), and finally the flood event of 2021 is 

described (section 3.3). 

3.1 The Geul catchment 
The Geul River is an important tributary of the Meuse and drops about 250 meters over 

approximately 60 km, making it one of the few steeply sloping rivers in the Netherlands with 

an average slope of 6% (ENW, 2021; Tsiokanos et al., 2024). The catchment’s elevation is 

illustrated in Figure 4. The river is prominently rain-fed and has an average discharge of 

approximately 3.2 m³/s. Consequently, its discharge can vary enormously during flood and 

drought events (Tsiokanos et al., 2024). Due to the flash flood character of the 2021 event, the 

Geul area experienced higher impacts during and after the flood as compared to damages along 

the Meuse River (Endendijk et al., 2023; Slager et al., 2022). The upstream part of the Geul 

river is characterized by a relatively fast response to precipitation. The fast rainfall runoff 

originates from a low infiltration capacity caused by poorly permeable rocks in the subsurface. 

In addition, recent flood management measures (e.g. river widening and channel deepening) 

prevented flooding in the main branch of the Meuse (JCAR ATRACE, 2025-a; Slager et al., 

2022).  

The Geul catchment area is 340 km2 and exists for 46% of grassland, 19% of arable land, 12% 

of buildings, 5% of roads, and 20% of forests (JCAR ATRACE, 2025-a). This catchment is 

characterized by small built-up areas in a rural area. Many small towns and villages are in the 

stream valley, where the river often flows through narrow village centers. As a result, the water 

level increases in the village centers at higher discharge compared to the water levels in the

Figure 3: Topography of the Transboundary Geul Basin. Source: (JCAR ATRACE, 2025-a) 
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 rural area (ENW, 2021). Therefore, to reduce the flood risk, many rainwater buffers have been 

constructed throughout the catchment (JCAR ATRACE, 2025-a). 

3.2 Early Warning Systems in the Netherlands 

In the Netherlands there is an explicit distinction between major floods from the main 

waterways and local floods from regional waterways or local rainfall (Kok et al., 2017). Flood 

risk management for main waterways addresses the protection against main rivers such as the 

Rhine and the Meuse, the largest lakes such as the Ijssel Lake and the sea. When these main 

waterways flood, the consequences in terms of casualties and damages cannot be foreseen. On 

the other hand, the regional flood risk management focuses on the flood risk of smaller streams 

and canals, which are usually caused by local rainfall (K. De Bruijn et al., 2023).  

Specifically, in the Netherlands, Rijkswaterstaat (RWS) is responsible for giving local 

authorities early warnings for high water levels or extreme events which are relatable to water 

management (Ministerie van Infrastructuur en Waterstaat, 2024b). RWS monitors the 

discharges and water levels of the main rivers in the country (Ministerie van Infrastructuur en 

Waterstaat, 2024a). Simultaneously, regional waterboards obtain precipitation forecasts of the 

KNMI through an automatic warning system when a critical precipitation limit is likely to be 

exceeded (KNMI, 2003). Both RWS and the local Waterboards have focused their EWS on 

rainfall and hydrological forecasts without information about impacts. This is confirmed by 

Merz et al. (2020) who described more in general that often only magnitudes of events are 

modelled in EWS and not impacts.  

Although, it is acknowledged that a grey zone exists between the management of these two 

regimes. The distinction extends to the governance of protection standards and the geographical 

distribution of these responsibilities. For instance, the estimated exceedance probability of the 

July 2021 event did exceed the protection standards (causing flooding and damages) of the 

smaller local rivers but was within the protection range around the Meuse River (where 

protection infrastructure functioned well) (K. De Bruijn et al., 2023). 

  

Figure 4: Elevation map of the study catchment, including 

land boundaries and nearby cities. 
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3.3 The Flood event of July 2021 

In retrospect to the flood event in July 2021, extraordinary precipitation events between 12 and 

15 July covered a large area of the Meuse and Mosel basins in Germany, Belgium and the 

Netherlands (ENW, 2021; K. De Bruijn et al., 2023). The meteorological conditions were 

characterized by a cutoff low-pressure system over Central Europe that supplied warm and very 

humid air masses to Central Europe from the Mediterranean in a rotating movement 

(Tradowsky et al., 2023). Simultaneously, with the low-pressure system slowly approaching 

from France towards Germany, the troposphere was increasingly unstably stratified 

(Tradowsky et al., 2023). Both meteorological drivers were forced upwards due to the presence 

of the western low mountain ranges (e.g. Eifel, Ardennes) causing damming effects. As a result, 

a cold pit originated where the air from a large area circulated in the direction of the pit. In the 

cold pit, the air went up due to the temperature gradient, cooled and rained out (ENW, 2021). 

This system caused heavy rainfall, where the most precipitation fell in the Ardennes Vestre 

River basin and in the southern Walloon part of the Geul river basin (Asselman et al., 2022). In 

addition, in the core of the weather system the rainfall peak amounts exceeded 250 mm (K. De 

Bruijn et al., 2023).  

3.3.1 Meteorological conditions in the Geul catchment 

In terms of rainfall intensity and atmospheric conditions, the weather system itself was not 

uncommon for the region during summer (Asselman et al., 2022). However, the stagnant 

position of the system over the area led to exceptionally high and prolonged precipitation, 

resulting in extreme cumulative rainfall totals (Asselman et al., 2022; ENW, 2021). The severity 

of the event in the Meuse catchment is illustrated by a Gumbel distribution of extreme 

precipitation values, with return periods exceeding 1:10,000 years in eastern sub-catchments of 

the Meuse (ENW, 2021). Between 13 and 15 July 2021, total precipitation in the Geul 

catchment ranged from 160 to 180 mm (Asselman et al., 2022; K. De Bruijn et al., 2023). On 

average, 128 mm fell within the 48 hours, corresponding to a return period of 1:500 years when 

orographic effects are considered (Asselman et al., 2022). Specifically, the (accumulated) 

Figure 5: The amount of rainfall in the Geul catchment from 10 July till 16 July 2021. The top figure visualizes the max, 

median, and minimum precipitation intensity [mm/h] that fell across the catchment per time step. The bottom figure depicts the 

maximum, median, and minimum cumulative sum of precipitation [mm] in the catchment. 
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amount of rainfall that fell in the Geul basin is presented in Figure 5, based on ERA5 reanalysis 

data from ECMWF. Note the event had three high rainfall peaks between 14 and 15 July.  In 

contrast, the average monthly July precipitation in Zuid-Limburg is around 80mm, highlighting 

the event’s exceptional nature (Asselman et al., 2022). 

In addition, until the forecast issued on 10 July, the extremeness of the event was not predicted. 

The first indications of rainfall appeared in the forecast on 11 July. From that point onward, 

predicted rainfall amounts and peak discharges were frequently revised upward. Consequently, 

the ENW evaluation report (2021) concluded that the real-time rainfall data from the KNMI 

radar was of insufficient quality, underestimating the cumulative amount of precipitation with 

approximately a factor three. Therefore, it is possible that probabilistic forecasting systems 

could have reflected these extremes (ENW, 2021). In addition, the evaluation report of Van 

Heeringen et al. (2022) demonstrates that only the deterministic forecasts ICON-EU from the 

German Weather Institute (DWD) estimated the extreme rainfall amounts for 11 July. The 

following days the ECMWF ensemble forecasts became more accurate, resulting in overall 

accurate ensemble forecasts. This means that the report concludes that there was at least a timely 

indication of very high precipitation initialized by ECMWF and the DWD. Although it must be 

acknowledged that for this specific event the ECMWF forecasts were behind to those of the 

DWD, where the DWD gave an indication much earlier (Van Heeringen et al., 2022). 

Ultimately, it appears that different weather forecast institutes predict different outcomes for 

the days before the flood, where the KNMI did not came close to the observed rainfall with 

their forecasts (ENW, 2021). The DWD provided the first indication of extremeness on 11 July 

at 00:00 UTC, after which it underestimated the event until 12 July. Lastly, the ensembles of 

the ECMWF underestimated the event till 11 July 12:00 UTC (Van Heeringen et al., 2022).     

3.3.2. Extreme water levels and peak discharges in perspective of the Geul 

catchment 

This record-breaking precipitation resulted in record high discharges in the Meuse and its 

tributaries. The peak discharge in the Meuse arrived in Eijsden at 22:00 on 15 July and took 

approximately 113 hours to travel to the most downstream point of the Meuse near Rotterdam. 

Simultaneously, as the peak of the Meuse reached the 

confluence with the Geul river, the discharge peak of 

the Geul also arrived at this junction (ENW, 2021). As 

a result, this temporal overlap restricted effective 

drainage, leading to elevated water levels in the Geul 

estuary. These water levels likely contributed to the 

downstream impacts of the event (Asselman et al., 

2022).   

Furthermore, the timing of maximum water levels 

across the catchment varied, as illustrated in Figure 6. 

The figure demonstrates that peak water levels 

upstream in the Geul (measuring stations 13 and 14) 

occurred later than those downstream due to a 

secondary rainfall peak. The highest water levels in the 

Geul were recorded between the evening of 14 July 

and the morning of 15 July, where the first peak 

occurred around Mechelen at 18:00 on 14 July. This 

peak resulted in water levels higher than the T100 

water level in the Geul. 

Figure 6: Moment and height of the peak water 

level along the Geul River at different measuring 

stations (each a different number and colour). 

From upstream (number 14, blue) to downstream 

(number 1, Pink) and in black the moment and 

height of the water level at the measuring station 

in the Meuse near the outlet of the Geul. Obtained 

from ENW (2021) 
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As a result, the actual water levels during the event exceeded the water levels associated with 

the designed return period of T25 (ENW, 2021). This indicates that the event falls within the 

scope of accepted flood risk since the water levels were above the T25 return period. Ultimately, 

the tributaries of the Meuse such as the Geul, Geleenbeek, and the Roer had a water level 

exceedance probability of approximately 1:100 till 1:1000 years (ENW, 2021). 

3.3.3 Evacuation and taken measures in the Geul catchment 

As water levels in the Geul rapidly exceeded design thresholds, authorities were forced to 

respond under extreme and unforeseen circumstances, especially in the tributaries of the Meuse. 

In these catchments existing disaster protocols were not prepared for events of this severity, 

leaving villages and areas such as Valkenburg not evacuated. Consequently, many residents 

were caught by surprise during the night of 14 and 15 July 2021 when water levels rose very 

fast (ENW, 2021). In Figure 7 the timeline of the warnings, communication and response in the 

Geul catchment is demonstrated. Based on the timeline, the start of the flood occurred at 22:45 

on 14 July 2021. 

In general, the warning communication was disseminated through a combination of formal and 

informal channels, including municipal authorities, safety regions, NL-Alerts, social media, 

police loudspeakers, church bells, and the regional broadcaster ‘L1’. In addition, many people 

received informal warnings via WhatsApp groups or through family or acquaintances living 

upstream (ENW, 2021). 

Although official warnings were issued by the Safety region Zuid-Limburg at approximately 

17:00 and 22:30 on 14 July. These messages emphasized the potential danger of the forecasted 

rainfall and rising water levels, advising to remain indoors. However, they lacked critical 

information such as expected flood depths, spatial flood extents, and impact zones. Within the 

scope of the existing protocols, evacuations were carried out in high-risk zones directly adjacent 

to the river throughout 14 July. As a result, several campsites and social facilities were 

evacuated in Valkenburg and Meerssen (ENW, 2021).  

Despite these efforts, the majority of residents in the Geul valley were caught by surprise. The 

floodwaters had particularly impacts on communities in Valkenburg and Meersen, as well as 

downstream areas along the Juliana channel in the villages Bunde and Geulle. Moreover, two 

neighbourhoods in Valkenburg experienced power cuts and approximately 1000 people were 

Figure 7: Timeline of warnings, communication, and response in the Geul catchment, created from the timeline of ENW (2021). 
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exposed to flooding and only evacuated after water had already flooded the area (ENW, 2021). 

Furthermore, respondents of the survey by Endendijk et al. (2023) indicated that the 

respondents living in the more upstream flooded area of the Geul River were also caught by 

surprise.   

3.3.4 Impacts in the Geul catchment 

While large-scale evacuations were limited and often delayed, the severity of the flood led to 

several physical impacts. The primary driver of the extensive damage was the exceptional 

precipitation that fell over the catchment (ENW, 2021). The rainfall in combination with the 

fast rainfall runoff processes, and the hilly terrain caused high discharges in the Geul river, 

which ultimately, resulted in the flooding of floodplains. Due to the presence of low protected 

villages in the stream valley, the impact of the event was relatively high for agriculture and 

residential buildings (Endendijk et al., 2023; ENW, 2021; JCAR ATRACE, 2025-a). In total, 

the extreme flood event of July 2021 in North-Western Europe caused 230 fatalities and around 

€40bn of damage (Lehmkuhl, et al., 2022). Fortunately, unlike in Germany and Belgium, the 

flood event did not result in direct casualties in the Netherlands. However, the observed flow 

velocities, water depths exceeding 1.5 meters, and the rapid water level rise in several parts of 

the Geul valley indicate that these extreme conditions could have led to more casualties (ENW, 

2021; Slager et al., 2022). 

Nevertheless, the event caused severe disruption throughout the catchment, even though the 

duration of the flood was relatively short (not longer than one day; Figure 7). The impacts were 

dependent on the timing of peak flow, increase in water depth and velocity (ENW, 2021). 

Moreover, as the limited early warning and the flash flood character affected the response 

ability, different stakeholders in the catchment suffered high losses due to peak seasonal usage 

during the summer period. Examples are damages to agricultural lands and campsites (ENW, 

2021).  

In addition, by early August, insurers had reported nearly 13,000 damage claims from Limburg, 

with the majority originating from the different tributaries. Ninety percent of the damage claims 

were related to private homes and vehicles. Moreover, approximately 600 businesses were 

affected by the flood, of which around 70% were located along the Geul. Ultimately, the total 

damage in the Netherlands is estimated in the order of € 350 – 600 million (ENW, 2021). 

Looking at the impacts after the flood event, Endendijk et al. (2023) investigated that the 

disaster prevention was effective during the flood, as only households located in areas without 

dikes have been flooded. Those who received a warning employed more flood damage 

mitigation measures than households without a warning. These adaptation measures reduced 

the damage by approximately 20% to 50%.  

3.3.5 Post-flood actions in the Geul catchment 

After the flood event of July 2021, the safety regions Limburg-Noord (VRLN) and Zuid-

Limburg (VRZL) have prepared together with Rijkswaterstaat and Waterboard Limburg a 

disaster response plan for anticipating high water levels in the main rivers and tributaries of the 

province. The goal of the plan is to have a close collaboration with the local authorities and 

emerging services, whereby the consequences of future high-water levels will be prevented as 

much as possible. The plan will support the operational deployment by defining preventive 

actions and responses based on the discharges of the rivers and scenarios (Veiligheidsregio 

Zuid-Limburg et al., 2024).   

Moreover, in response to the summer floods of 2021, different research programs are initiated, 

including a Joint Cooperation program for Applied scientific Research on flood and drought 
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risk management in regional river basins (JCAR). The program’s goal is to Accelerate 

Transboundary Regional Adaptation to Climate Extremes (ATRACE) by evaluating impacts 

and implications, aiming to improve preparedness and to support collaboration between 

partners in the transboundary basins of Belgium, Germany, Luxembourg and the Netherlands 

(JCAR ATRACE, 2025-b). This research will contribute to JCAR by focusing on the 

development of IbF based on precipitation ensemble forecasts. 

Furthermore, authorities currently assess measures to mitigate impacts and increase 

preparedness for similar extreme events. It can be concluded that the exceptional magnitude 

and spatial extent of the July 2021 floods, along with their severe impact on neighboring 

countries, heightened the awareness that a similar hydrometeorological hazard occurring in a 

different region in the Netherlands could have caused much larger impacts (K. De Bruijn et al., 

2023). In response to this awareness, the development of this IbF for the Geul catchment could 

hypothetically lead to a wider application of impact-based models in the Netherlands, what will 

contribute to improved responses.
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4. Methodology 
This chapter outlines the methodological framework created to investigate the development of 

an IBFFWS for the Geul catchment. The aim of this chapter is to provide an overview of the 

methods and models used for data collection, processing, interpretation, evaluation, and 

limitations and uncertainties. Figure 8 represents the overall study setup in a flow chart. In 

general, this study applies different models from the Geographical, Environmental, and 

Behavioural (GEB) model framework (J. A. De Bruijn et al., 2023). 

Furthermore, in Figure 8 each grey-striped box represents a step in the study: ‘The preparation 

of precipitation ensemble forecasts’ (Section 4.1), ‘From forecasts to flood maps’ (4.2), and 

‘From flood maps to impacts’ (4.3). The blue boxes represent different models, where the dark 

blue boxes are models which are part of the GEB framework. Moreover, the green boxes 

represent outputs from this study and the yellow box represents the improvement of the SFINCS 

outcomes (Appendix C). Each step has different input data, which is specified in each section 

(4.1.1, 4.2.2, and 4.3.1).

Figure 8: A flow chart of the study, where the different colours depict different products used or outcomes, with blue 

representing the different models, yellow the calibration, and green representing the output. Specifically, the dark blue boxes 

are integrated in the GEB model.  
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As the study is the development of a model chain, the output of one box will be input data for 

the next step in the chain. As a result, the processed rainfall grids (4.1) together with the CWatM 

model will be used for forcing the SFINCS hydrodynamic model of the Geul catchment (4.2). 

Subsequently, the flood extents will be processed and evaluated before it will be used in a loss 

model (4.3). This chain is developed in the GEB framework (4.2). Ultimately, this framework 

iterates over different forecasts, varying by a decreasing lead time up to the flood event. 

Moreover, the framework has been tested under conditions that reflect operational forecasting 

practices, ensuring the relevance of the results for real-world applications. The elaboration of 

the methodological framework now starts with an explanation on how the precipitation 

forecasts are prepared to be used in the IbF model.  

Lastly, SFINCS is initialized with initial soil moisture conditions and daily ERA5 precipitation 

data from the CWatM model. However, the initialisation of CWatM is not part of the scope of 

this study. The study of Burek et al. (2020) elaborates the coupling of CWatM within GEB, this 

study can be used for more information. Most important is that the modelling of hydrological 

conditions in this study is provided with CWatM and proven with the studies of Burek et al. 

(2020) and (J. A. De Bruijn et al., 2023). The conditions of CWatM are used in SFINCS but are 

not elaborated in this study. 

4.1 Preparation of Precipitation Ensemble forecasts 
The first step in the methodological framework involves the preparation of precipitation input 

data for all subsequent hydrodynamic and impact modelling. Moreover, this section describes 

the procedures for the data collection, cleaning, and preprocessing of the precipitation data. As 

one of the objectives of this study is to investigate the skill of ensemble forecasts compared to 

the ERA5 dataset from ECMWF, different forecasts are processed with varying lead times.  

4.1.1 Forecast data 

In this study different precipitation timeseries are used for forcing the CWatM hydrological 

model and SFINCS hydrodynamic model. First, the ERA5 dataset will be explained, whereafter 

the ensemble forecasts of the ECMWF are outlined. 

ECMWF ERA5 dataset 

To establish a reliable baseline for the July 2021 event, this study uses the ERA5 reanalysis 

dataset from ECMWF, hereinafter referred to as observational data. This dataset combines 

global observations with model data to provide hourly and daily gridded precipitation estimates 

(Hersbach et al., 2020; ECMWF & Copernicus, 2025). The daily precipitation grids are used to 

warm up the framework and to initialize hydrological conditions in CWatM, whereafter hourly 

values are used inside the SFINCS model. Therefore, precipitation data from 1 January to 31 

July 2021 was extracted and clipped to the Geul catchment. The selected grid spans longitudinal 

steps of 0.1 degrees from 5.7-6.1 degrees in the x-direction and latitudes from 50.7-50.9 

latitudes in the y-direction, resulting in 15 grid cells with an approximate horizontal resolution 

of 6 km and vertical resolution of 11km. Ultimately, the hourly ERA5 precipitation data is used 

to simulate the event from 11 to 16 July 2021 and serves as the baseline for the evaluation of 

model performance under observed conditions. Additionally, daily ERA5 data is used in the 



Chapter 4    Methodology 

 

34 

 

warming-up (spinning) phase of the framework where the CWatM model sets the hydrological 

conditions of the catchment. 

ECMWF ensemble forecasts 

In addition to ERA5, this study uses ECMWF perturbed ensemble precipitation forecasts from 

the Ensemble Prediction System (EPS), version CY47R2 (ECMWF, 2025d) to force SFINCS. 

This version was selected to ensure that forecasts were issued before the event (historic 

operational forecasts), hereby avoiding the nature of hindcasts. For this reason, the evaluation 

of the forecast skill is improved as new model updates from the ECMWF are not included and 

without extra reanalysis. Forecasts were retrieved through the ECMWF operational archive 

with an API request where perturbed and control forecasts are downloaded. Together they 

represent an ensemble forecast with 50 perturbed forecasts and one control forecast. Each 

forecast spans 15 days, with hourly timesteps for the first 90 hours, three-hourly timesteps from 

93 to 144 hours, and six-hourly intervals from 150 till 360 hours (ECMWF, 2025b). For the 

first 90 hours the forecasts are updated each six hours following a dissemination schedule 

(ECMWF, 2025a). 

Furthermore, the spatial resolution of the forecasts is defined within the API request. This study 

employs the grid F640 Gaussian grid, which was used in the operational forecasts in the days 

leading up to the 2021 flood event. The F640 grid contains 640 lines between the equator and 

the poles, translating to a vertical resolution of approximately 0.14 degrees (~15.6 km), with a 

comparable horizontal resolution of approximate 8 km at 50 degrees latitude. 

Utilizing both control and perturbed forecasts facilitates a more robust understanding of the 

hydrological response to forecasted precipitation. Since flooding in Valkenburg began on 14 

July at 22:45 (section 3.2), eight forecasts were selected from 11 July to 14 July, including both 

forecast initialization times of 00:00 and 12:00. As a result, the study’ lead times range from 

approximately 5 hours to 89 hours for both control and ensemble forecasts. Table 1 outlines 

these lead times and dissemination times, which vary depending on whether hourly or extended 

three-hourly forecast intervals are applied (ECMWF, 2025a).  

The forecast data is downloaded with an API request through the ‘ecmwfapi’ package, 

specifying parameters for both control and perturbed forecasts as detailed in Appendix A. The 

request accesses the ECMWF’s operational archive ‘od’, selecting the surface-level ‘sfc’, and 

specifies the total precipitation (cumulative) as the variable of interest along with other more 

technical and geographical parameters. Note that this study uses the operational archive instead 

of the hindcasts to use the forecasts which were available for users at that moment in time (see 

Discussion).  
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Table 1: Overview of lead times with and without considering the dissemination schedule of ECMWF (2025a) and based on 

the determined start of flooding on 14 July 22:45 from section 3.2. 

 

4.1.2 Processing input data 

Before the forecast data is used as input in the framework it is first processed using a 

standardized Python workflow. Each API request returns a GRIB-format file, where 

specifically for forecasts from 11 July and 12 July additional data requests were necessary. 

Since these forecasts did not cover 15 July with hourly timesteps entirely, the lacking hours are 

filled with 3-hourly timesteps to extend the coverage up to at least 00:00 on 16 July. 

Additionally, forecasts issued at 12:00 lacked precipitation for the first 12 hours of the day. To 

meet the input requirements of SFINCS zero precipitation grids with similar dimensions were 

inserted for the missing period to prevent introducing artificial rainfall. Regarding the ERA5 

baseline simulation in SFINCS, the processing steps are not needed as the data already captures 

the entire month July (see Section 4.1.1). 

In addition, the forecasts that required extension are merged to get consistent input data. As the 

original forecast files contain cumulative precipitation in meters over time, all the data is 

decumulated and converted to millimeters. When three-hourly timesteps or zero-precipitation 

grids are inserted, the forecasts are carefully aligned and converted to hourly intervals by 

interpolating to get a consistent timestep.  

Furthermore, to efficiently incorporate the entire perturbed ensemble forecasts of 50 members, 

this study defines an ensemble percentile approach. For each grid cell, the 25th, 50th, 75th, 90th 

and 95th percentile are calculated across the ensemble. This new method describes the 

uncertainty and spread within the ensemble but significantly reduces the computation time in 

the next modelling steps. Without this step, all the 50 members would have been processed 

individually. An example of the spatial averaged ensemble members is presented in Figure 9. 

Once each forecast meets the required temporal coverage, the spatial grids are clipped to the 

catchment boundaries before being used as input in the SFINCS hydrodynamic model. 

 

FORECAST INITIAL LEAD TIME 

[hours: minutes 

before] 

FORECAST 

TIME TO 

DISSEMINATE 

TO USERS 

LEAD TIME IN 

REALITY [hours: 

minutes before] 

11 July 2021 00:00 94:45 06:27 88:18 

11 July 2021 12:00 82:45 18:27 76:18 

12 July 2021 00:00 70:45 06:27 64:18 

12 July 2021 12:00 58:45 18:12 52:33 

13 July 2021 00:00 46:45 06:12 40:33 

13 July 2021 12:00 34:45 18:12 28:33 

14 July 2021 00:00 22:45 06:12 16:33 

14 July 2021 12:00 10:45 18:12 4:33 

Start of flooding 14 July 2021 22:45 - 14 July 2021 22:45 
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4.1.3 Evaluating the different forecasts  

To evaluate the quality of the new percentile approach, a combination of metrics is applied to 

examine the overall performance of the forecasts, the accuracy, the reliability, and the spatial 

representation of the forecasts. Each metric targets a specific aspect of forecast quality to ensure 

a comprehensive comparison. Since the ERA5 dataset is used as observational data, this study 

investigates for every lead time the quality of each perturbed percentile and control forecast 

compared to the ERA5 dataset. Based on the outcomes of the forecast evaluation, the first sub-

question RQ1 can be answered: “How well do historic operational ensemble and deterministic 

forecasts relate to the observed precipitation patterns and totals of the July 2021 flood event, 

compared to ERA5 reanalysis data? 

As a first step in the evaluation, scatterplots were used to visually compare the ensemble 

percentile and control forecasts against the ERA5 observations (WCRP & WWRP, 2017). To 

ensure clarity, only the maximum forecasted value across the spatial grid were included per 

percentile and lead time in the analysis. For the control forecasts, all individual grid cells are 

included per lead time and presented in different colors. This visualization initializes the 

subsequent more statistical metrics (PIT, CRPS, MAE, Bias, and FSS) by highlighting the 

forecast-observation relationship. 

Evaluating the reliability of the Ensemble percentile forecasts: 

Following the visual comparison with scatterplots, the reliability of the ensemble percentile 

forecasts is evaluated using Probability Integral Transform (PIT) histograms. These histograms 

are essential for evaluating how well the spread of the percentiles corresponds to the observed 

data. This metric evaluates whether the percentile forecasts are under dispersed, over dispersed 

or exhibit systematic biases. Therefore, a PIT histogram reveals the relation between the 

observed frequency against the forecast probability (Crochemore et al., 2016; WCRP & 

WWRP, 2017; Yang et al., 2021). 

Figure 9: An example of a spatial averaged ECMWF ensemble precipitation forecast with 50 members (in distinct colours), 

and the mean forecast created from the members (in black). This example is a perturbed forecast initialized on 12 July 2021 

00:00. 
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To construct the PIT diagrams, PIT values were calculated for each lead time and percentile by 

comparing observations with the corresponding ensemble forecasts. Specifically, for each 

timestep, the rainfall intensity values were sorted per percentile, and the rank of the observed 

value within this sorted list was determined. Then, this rank was normalized by dividing it by 

the total number of ensemble members to obtain the PIT value. This process was applied for 

each grid cell and time step across all the lead times and percentile members. To assess the 

overall model performance, the PIT values were averaged across all grid cells, which resulted 

in the creation of the PIT histograms. When the members are close to the 1:1 line it means that 

it perfectly fits the ERA5, when it is below the line it is under dispersed and when the member 

is above the 1:1 line it is over dispersed and thus systematically biased (Crochemore et al., 

2016; WCRP & WWRP, 2017; Yang et al., 2021). 

Evaluating the overall performance of the Ensemble percentile forecasts: 

Subsequently, the overall performance of the ensemble forecast is calculated with the 

continuous ranked probability score (CRPS). The CRPS quantifies the squared difference 

between the cumulative distribution of the forecast and the observed outcome, represented as a 

step function. A lower CRPS indicates higher forecast skill, as it reflects a closer alignment 

between the predicted and observed distributions (Crochemore et al., 2016). In this study, the 

CRPS score is calculated for the rainfall intensity per grid cell for each lead time based on the 

ensemble percentiles, following the equation derived by Hersbach (2000) (see Equation 4.1). 

 𝐶𝑅𝑃𝑆(𝑖,𝑗) =
1

𝑁
∑ |𝑥𝑘

(𝑖,𝑗) − 𝑥𝑜𝑏𝑠
(𝑖,𝑗)

| −
1

2𝑁2
𝑁
𝑘=1 ∑ ∑ |𝑥𝑘

(𝑖,𝑗) − 𝑥𝑙
(𝑖,𝑗)

|𝑁
𝑙=1

𝑁
𝑘=1              (4.1) 

(i, j): Grid cell dimensions 

N: Total amount of percentiles 

𝑥𝑘:  Forecasted value for percentile k 

𝑥𝑙:  Forecasted value for percentile l 

𝑥𝑜𝑏𝑠:  Observed value in ERA5 

Equation 4.1 is employed in a standardized 

python workflow using the ‘crps_for_ensemble’ 

function, which interprets ensemble forecasts as 

an empirical Cumulative Distribution Function 

(CDF). Figure 10 illustrates the CRPS 

calculation, where the grey area between the 

orange forecast CDF and the blue observation 

CDF represents the CRPS score. Before the 

CRPS score is calculated across lead times, the 

spatial resolution of the percentile ensemble is 

first aligned with the resolution of ERA5. Subsequently, CRPS values are computed for each 

grid cell and time step, and then averaged over time to generate a spatial CRPS map. These 

Figure 10: An example of how the CRPS value is calculated 

based on the CDF curves of the ensemble forecast and the 

observation per time step and per grid cell. 
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maps are then used to derive a lead time-based line plot, which summarizes the average CRPS 

over time and grid per lead time. 

Evaluating the accuracy of the Ensemble percentile & Control forecasts: 

Following the evaluation of ensemble spread, it is important to assess the accuracy of the 

forecast values compared to observations. To compare the different forecasts with the 

observations, the accuracy of the control and ensemble percentile forecasts are quantified by 

calculating the Mean Absolute Error (MAE) and Bias. These metrics are calculated for each 

grid cell, enabling the identification of regional variations in forecast performance. This allows 

for a fair and consistent comparison between the rainfall intensity of the deterministic control 

forecast and the percentiles of the ensemble forecast. The equations of these metrics are outlined 

in Equation 4.2 and 4.3, with the goal to give insights in the magnitude of the error per grid cell 

and if the forecast is underestimated or overestimated (Crochemore et al., 2016; WCRP & 

WWRP, 2017; Yang et al., 2021). 

𝑀𝐴𝐸 =  
1

𝑁
∑|𝐹𝑖 − 𝑂𝑖|                    (4.2) 

𝐵𝑖𝑎𝑠 =  
1

𝑁
∑ 𝐹𝑖

1

𝑁
∑ 𝑂𝑖

                    (4.3) 

N: Number of measurements 

𝐹𝑖: Forecasted value 

𝑂𝑖:  Observed value 

Subsequently, for the ensemble percentile forecasts, the MAE and Bias are averaged across all 

the ensemble percentiles to produce a single spatial map for each lead time. In addition, the 

standard deviation of both metrics is derived to illustrate the variability in forecast accuracy 

among the different percentiles. 

Evaluating the spatial representation of the Ensemble percentile & Control forecasts: 

Moreover, traditional verification metrics such as MAE compare forecasts and observations 

individually at each location. This becomes a problem when an event such as a heavy rainfall 

is forecast slightly off the location where it occurred. At that moment, a double penalty arises 

as a forecast will be doubly penalised once for missing the feature in the correct spot, and once 

for the false alarm in the wrong place (Haiden & Lledó, 2023). Therefore, the spatial evaluation 

of the forecasts is quantified with the Fractions Skill Score (FSS) metric. This metric is widely 

used for threshold-based events such as heavy rainfall where it benefits in including both the 

spatial distribution and displacement errors. (WCRP & WWRP, 2017; Haiden & Lledó, 2023). 

In this study, the FSS is applied for both the control forecast and the ensemble percentiles (25th, 

50th, 75th, 90th and 95th) by comparing the predicted and observed values per grid cell. The 

calculated scores, ranging from 0 (no skill) to 1 (perfect agreement), allow for an objective 

comparison of how well each forecast captures the spatial structure of the event over different 

lead times. This spatial evaluation complements other metrics and supports the assessment of 

which forecast member or percentile best represents the observed rainfall.  
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The calculation of the FSS is standardized in a structured python workflow. First, all datasets 

are synchronized in both spatial resolution and time to ensure consistent spatial and temporal 

alignment with the ERA5 data. Subsequently, the FSS is calculated for the deterministic control 

forecast by evaluating each grid cell over time. This is done by binarizing precipitation values 

using a different rainfall intensity threshold (e.g., 0.5 mm/h) and comparing the exceedance 

frequencies between the forecast and observed values (See equation 4.4). The result provides a 

map with FSS scores per grid cell (Necker et al., 2024). 

𝐹𝑆𝑆𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 1 −
(∑ (𝑁𝑃𝑖𝑛,𝑓−𝑁𝑃𝑖,𝑜))2𝐼

𝑖=1

∑ (𝑁𝑃𝑖𝑛,𝑓)2+∑ 𝑁𝑃𝑖,𝑜
2𝐼

𝑖=1
𝐼
𝑖=1

        (4.4) 

I:  Total number of grid cells across the study area 

𝑁𝑃𝑖𝑛,𝑓: The number of grid cells above the threshold from the 

deterministic forecast 

𝑁𝑃𝑖,𝑜:  The number of grid cells above the threshold from the 

observations 

For the ensemble forecasts, a probabilistic FSS (pFSS) is computed. In contrast to the FSS 

control, precipitation values for each percentile are binarized and aggregated to determine the 

frequency with which rainfall exceeds the thresholds. This aggregated frequency is then 

compared to observations to calculate the pFSS per grid cell, accounting for the spread within 

the ensemble (see equation 4.5) (Necker et al., 2024). 

𝑝𝐹𝑆𝑆 = 1 −
∑ (∑ 𝑁𝑃𝑖𝑛,𝑓−𝑁𝑃𝑖,𝑜)2𝑁

𝑛=1
𝐼
𝑖=1

∑ (∑ 𝑁𝑃𝑖𝑛,𝑓)2+∑ 𝑁𝑃𝑖,𝑜
2𝐼

𝑖=1
𝑁
𝑛=1

𝐼
𝑖=1

        (4.5) 

N:  Total number of ensembles 

I:  Total number of grid cells across the study area 

𝑁𝑃𝑖𝑛,𝑓: The number of ensemble members predicting the event above the 

threshold at each time step each grid cell 

𝑁𝑃𝑖,𝑜:   The number of observations of event 𝑖 for grid cell 𝑖 

Once both FSS control and pFSS values are stored as spatial data arrays for each lead time, this 

approach enables a robust comparison between spatial deterministic and probabilistic forecast 

performance. Additionally, to provide an overview, multiple thresholds (0.5, 1, 3, 4 mm/h) are 

applied, and summary statistics are derived from the FSS maps. For each threshold, the median, 

maximum, and minimum scores are extracted per lead time and visualized using boxplots.  

Ultimately, a quantitative summary of the metrics is presented in a table to compare the different 

scores. These metrics are averaged over both the spatial and temporal dimensions of the forecast 

and are based on the rainfall intensity. Once the overview is created, it becomes possible to 

examine which lead time best represents the observed rainfall from ERA5. 
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4.2 From forecasts to flood maps in the GEB framework 
The precipitation forecasts from 4.1 are applied within the GEB framework. GEB integrates, 

and couples different models, including water cycle models (CWatM, MODFLOW), Human 

behaviour models (DYNAMO, ADOPT), a vegetation dynamics model (plantFATE), and a 

hydrodynamic model (SFINCS). These models can function independently or in combination 

depending on the research design (J. A. De Bruijn et al., 2023).  

This study applies the GEB framework to simulate hydrological processes for the Geul 

catchment for a 10-year period (warming up period) in CWatM, whereafter SFINCS is 

initialized to simulate the flood extent and depth. While the framework handles the model 

coupling, the core of the SFINCS setup remains unchanged. This allows the study to focus on 

testing the effects of forecast input on hydrodynamic processes. 

Although the rainfall data were pre-processed, GEB required adjustments to be able to simulate 

ensemble forecasts without changing the initial conditions of the model. To efficiently run 

multiple ensemble members within SFINCS, a custom function is developed (named 

‘Multiverse’) within the GEB framework to automate the execution of the different forecast 

percentiles. This function stores the initial hydrologic conditions from CWatM and imports the 

processed forecast before SFINCS is initialized. After the conditions are stored, the function 

runs each forecast percentile as an individual model simulation. When a percentile run is 

completed, the function automatically restores the initial conditions, whereafter another 

percentile can be simulated with the same initial conditions. As a result, the function ensures 

that each forecast member starts with the same constant baseline, which leads in the end for a 

better comparison between percentiles. In addition, it prevents the influence from previous 

simulations on future results. 

4.2.1 The Super-Fast INundation of CoastS (SFINCS) Model 

Building on the framework overview, this study applies SFINCS (v2.1.3) to simulate flood 

extents and flood depths resulting from forecasted precipitation. The model is developed to 

efficiently simulate hydrodynamical processes such as compound flooding events at limited 

computational cost and good accuracy (Leijnse et al., 2021). To keep the efficiency, the model 

solves Simplified Shallow Water Equations (SSWE) or Local Inertial Equations (LIE). These 

equations are part of a reduced-physics model derived from the full momentum and continuity 

Saint-Vernant equations. The difference between the two equations is that SSWE incorporates 

the advection term to compute wave dynamics and fluxes over a spatial grid in more detail, 

while the LIE excludes this term for increased computational efficiency (Leijnse et al., 2021). 

Moreover, SFINCS further includes spatially varying processes such as infiltration, 

precipitation, and surface roughness, which are essential for simulating compound flooding 

(e.g. pluvial, fluvial, tidal components). Although the model excludes atmospheric pressure 

gradients and the Coriolis effect, SFINCS remains the first reduced-physics model to include 

all these processes, which makes it very useful for flood risk assessments (Leijnse et al., 2021). 

The numerical equations used for simulating the hydrodynamical processes are presented in 

Appendix B.  
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On a different note, the model consists of a 

rectangular staggered 2D grid where bed levels, water 

levels and water depths are defined in the grid cell 

centres and fluxes are incorporated as velocity points. 

This water level is dependent on the calculation of the 

fluxes between the grid cells. An example of the 

structure of the model grid is outlined in Figure 11. 

Furthermore, the advantage of SFINCS is that several 

types of forcing data can be applied, examples of 

forcing data are storm surge, precipitation or 

upstream discharge (Leijnse et al., 2021).  

This study uses precipitation as forcing data since the 

Geul is a headwater catchment with no river or tidal 

inflow points. Therefore, different processes 

explained by Leijnse et al. (2021) are excluded in this 

study as depicted in Figure 12. Specifically, the 

processes more related to coastal flooding (e.g. wave 

paddles, snap wave, and wind) are excluded. 

Moreover, in the simulation the sub grid topography 

is active as shown in Figure 12. This process conducts 

sub grid-corrections, which makes it possible to run 

the model on a coarser resolution without losing small scale effects such as roughness 

variations. Van Ormondt et al. (2025) found that these corrections significantly improve the 

model accuracy, especially in complex areas where small-scale variations have a major impact 

on water movement. Since the Geul is a meandering tributary, sub grid corrections are crucial 

in this study. Additionally, the sub grid accelerates the computation time.  

Ultimately, the model generates various hydrodynamic outputs throughout the simulation 

period. However, this study only uses the maximum flood map over the time to evaluate the 

maximum flood extent and depth. Hence, SFINCS is chosen because of its short computation 

time but still its proven high accuracy in coastal compound flooding hazards (e.g. Beveren, 

2022; Deltares, 2025b; Eilander et al., 2023; Leijnse et al., 2021), and in estimating flood 

damages (e.g. Sebastian et al., 2021). This makes it possible to run the different rainfall forecast 

scenarios processed in Chapter 4.1. However, using SFINCS in headwater catchments such as 

the Geul has not yet been tested (Deltares, 2025b), therefore this study also tests the simulation 

of pluvial and fluvial floods in small tributaries.  

4.2.2 Input data for SFINCS 

Apart from the different processes in the model, the user’s input such as initial conditions, 

boundary values, or parameter settings are specified in a text-based input file. This input serves 

to initialize the general mathematical framework for solving the equations elaborated in the 

previous section and to generate output based on the initiated settings (Leijnse et al., 2021). 

This study uses a coarse grid resolution of sixty meters, with a sub-grid correction of twelve 

Figure 11: SFINCS rectangular grid with bed 

level (d) and water level (ζ) in the cell centres 

(+) and water depth (h) and fluxes (q) in velocity 

points. Variables within the dashed box share the 

same grid indices, which are indicated with m 

and n for x- and y-direction. Obtained from 

Leijnse et al. (2021). 

 

Figure 12: Included processes in the SFINCS 

model for this study. 
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meters resulting in a 5-meter grid resolution. Moreover, the simulation period for the 

precipitation forecasts is dependent on the start time of the forecast but ranges from 12 hours 

till a maximum of four days. Besides, ERA5 data is used in a simulation period from 1 July till 

16 July.  

Beyond the warm-up period of the hydrological processes in CWatM and the processing of the 

rainfall forecasts, SFINCS also requires landcover data to determine spatial roughness, a DEM 

to determine the bed level, and a river network to complete the bathymetry.  

ESA landcover & Manning Roughness: 

First, land cover data is derived from the European Space Agency (ESA) World Cover 2021 

dataset with a spatial resolution of 10 meters (Zanaga et al., 2022). The catchment contains 

mostly grassland, cropland, built-up, and tree cover as presented in Figure 13.  

Subsequently, the data from Figure 13 is used to parametrize the SFINCS model with 

Manning’s roughness by using the relation between land use types and Manning roughness 

estimated by Deltares (2025a). As a result, every grid cell is coupled with a manning roughness, 

resulting in a spatial map with the Manning roughness based on the ESA World cover map with 

a similar resolution. The spatial map with manning roughness’ is presented in Figure 13. 

Incorporating spatial roughness into a hydrodynamic model improves the flow simulations as 

it allows the model to account for heterogeneity in surface types. Different surface types interact 

differently. This represents the different behavior of water over different land covers such as 

grass, paved areas or forests. As a result, the lagging effect of different land covers are included 

in the model making the flood extents, flow velocities, and water depths more reliable and 

accurate (Ye et al., 2018).  

 

 

 

 

Figure 13: With right the Landcover classification of the Geul catchment obtained from Zanaga et al. (2022) and left the 

determined manning roughness’ in the Geul catchment based on the ESA world cover map in a 10 meter spatial resolution. 
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Digital Elevation Model (DEM) & Mask file:  

The DEM is crucial in hydrodynamic modelling as changes in elevation determine flow 

gradients, which affect the flow velocities and discharges. Moreover, the source and resolution 

of the DEM significantly influences the simulation of flood extents and depths (Overhoff, 

2024). In this study, the SFINCS model must be provided with a depth file (containing the 

vertical elevation of each grid cell) and a mask file (Leijnse et al., 2021). For this reason, the 

DEM presented in Figure 4 is used in the model. This DEM file is provided by Deltares with a 

5x5 m resolution, where three national elevation model are combined: AHN4 (NL), Geoportail 

Wallonia (BE), and the Geoportal NRW (DE). In addition, infrastructure such as roads, train 

tracks, and bridges are included and depressions larger than 1 meter are already filled (Overhoff, 

2024). Since the coarse grid resolution is set to 60 meters, the DEM is resampled using 

interpolation to match this resolution. Consequently, the resulting depth file reflects a 60-meter 

resolution, even though a sub grid correction at 12 meters is applied. However, it is important 

to note that the model still operates at a 5-meter resolution, but this is not visible in the exported 

depth output (Deltares, 2025b). 

Moreover, the model requires a mask file which indicates the boundary cells, active cells, and 

inactive cells. Inactive cells can be cells located below or above certain elevation thresholds 

(e.g. cells of deeper water in lakes). As the Geul is a headwater catchment, only the grid cells 

inside the catchment are active. Additionally, no boundary cells are included in the model. 

River network: 

To complete the bathymetry, the DEM must be extended with the river bathymetry to have the 

depth of the rivers. Before the extension, the DEM is used in combination with the HYDRO-

MT package to determine the subbasins of the river. Subsequently, the river bathymetry can be 

included in the DEM. However, since there is no river bathymetry available of the Geul river, 

the river dimensions are determined based on the bank full discharge of the observed 2-year 

return period (Sampson et al., 2015). The 2-year return period discharge (Q) is then utilized in 

the power law equations of Andreadis et al. (2013) to calculate the river width (w) and depth 

(d) (Equations 4.4 and 4.5).   

𝑤 =  7.2𝑄0.50                              (4.6) 

𝑑 =  0.63𝑄0.31                             (4.7) 

Ultimately, for each subbasin the river width and depth are determined to complete the 

bathymetry. Subsequently, the model is improved with some minor adjustments to retrieve 

more reliable flood maps. 

4.2.3 Evaluating SFINCS 

Building on the previous sections where the input data and the model is explained, the model 

output is first improved in Appendix C. In this appendix, the taken steps are explained to 

retrieve more reliable outputs and to clarify the choices. Note that the preprocessing of the 

SFINCS outcomes is mainly conducted to improve the river network, to reduce the influence 

of certain water structures (like culverts) that are not represented in SFINCS, and to avoid a 

mismatch in the projection of the model. The last step of this methodological section involves 

the evaluation of the simulated flood maps from SFINCS. Both results are evaluated differently, 

where first the flood extent evaluation is described. 
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Flood extent evaluation: 

The flood extent is evaluated with aerial measurements captured shortly after the event (Het 

Waterschapshuis, 2021). Based on these measurements, Slager et al. (2021) created an observed 

flood extent limited to the main branch of the Geul and Dutch part of the study area. As a result, 

the evaluation of the simulated extent is also limited to the observed extent as illustrated in 

Figure 14. In addition, as the original measured extent is not available, this study approximates 

the measured extent by applying a 700-meter buffer around the observed flood extent. This 

approach aims to recreate the map presented by Het Waterschapshuis (2021). The recreation of 

the measured extent allows that the evaluation is restricted to the area that was observed shortly 

after the event. This improves the reliability of the comparison between simulated and observed 

extents. 

Moreover, prior to the evaluation the river network is excluded from the flood extent with a 

buffer zone equal to half the river width. This step is important as the study focuses on 

evaluating the flood extent of the floodplains and surrounding areas, rather than the river 

channel itself. Finally, the simulated and observed flood maps are converted into a binary 

format, clipped on the catchment boundaries, and checked on characteristics. The conversion 

into a binary format result into maps where flooded areas are represented by ones and non-

flooded areas by zeros. Another important step within the GEB framework is that a threshold 

of 15 cm is applied according to the study of Wing et al. (2017). This threshold means that a 

location is only considered flooded in SFINCS when the simulated water level exceeds this 

threshold.  

If both maps match in characteristics in terms of resolution and shape, the extents are evaluated 

based on the studies of Bernhofen et al. (2018) and Wing et al. (2017). In these studies, both 

flood maps are laid on top of each other. Then for each grid cell, the overlapping determines 

whether both maps indicate flooding, in this case both simulated and observed grid cell are 

equal to one and the cell is classified as a hit. If the observed map shows flooding while the 

simulation does not, the cell is considered as a miss. Conversely, if the simulated grid cell 

indicates flooding but the observed cell does not, it is labelled as a false alarm. If both simulated 

and observed cell indicate no flood, the cell is labelled as a correct negative. These four 

classifications are presented in a confusion matrix in Figure 15. 

Figure 14: The observed flood extent estimated by Slager et al. 

(2021) (in Blue) and the estimation of the measured extent (in red). 

Figure 15: An example of a confusion matrix for the 

flood extent. 
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Based on three classified categories hits, misses, and false alarms the performance metrics Hit 

rate (HR), False alarm rate (FAR), and Critical Success Index (CSI) are calculated as outlined 

in Equation 4.8, 4.9, and 4.10 

𝐻𝑅 =  
𝐻𝑖𝑡𝑠

𝐻𝑖𝑡𝑠+𝑀𝑖𝑠𝑠𝑒𝑠
           (4.8) 

𝐹𝐴𝑅 =  
𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚𝑠

𝐻𝑖𝑡𝑠+𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚𝑠
          (4.9) 

𝐶𝑆𝐼 =  
𝐻𝑖𝑡𝑠

𝐻𝑖𝑡𝑠+𝑀𝑖𝑠𝑠𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚𝑠
                 (4.10) 

The hit rate is the ratio of correctly flooded pixels, ranging from 0 (no flooded pixels match) to 

1 (all flooded pixels match). The metric examines the model’s tendency toward 

underprediction. Next, the false alarm rate is the ratio of wrong predicted flooded pixels, 

ranging from 0 (no false alarms) to 1 (all false alarms). This metric gives an idea whether the 

model has the tendency to overpredict the flood extent. Lastly, the CSI balances the hit rate 

(underprediction) and the false alarm ratio (overprediction). This metric can range from 0 (no 

match between the simulated and observed flood) to 1 (perfect match between the simulated 

and observed flood) (Wing et al., 2017). According to Bernhofen et al. (2018) the model has a 

good performance when the CSI is above 0.7. Despite this, it is important to note that the CSI 

biases larger flood extents and in areas with smaller topographic gradients (Landwehr et al., 

2024; Stephens et al., 2013). However, since this study compares the flood extent within the 

same flood, it is appropriate to use this metric (Bernhofen et al., 2018). Finally, the four 

classifications are visualized in a map to see the spatial distribution. Additionally, the three 

metrics are also presented in a line plot to visualize the score over the percentiles and lead times. 

An additional plot with the cumulative maximum over the forecast length and the spatial grid 

is inserted in this overview with the goal to visualize the total amount of rainfall per forecast 

type. 

Flood depth evaluation: 

To evaluate the model’s flood depth performance, observed water depth data was collected 

empirically with surveys by Endendijk et al. (2023). In the surveys participants reported flood 

levels at their houses in an anonymized manner, limited to four- or six digital postal codes. This 

approach ensures the respondents privacy while enabling spatial comparison. The spatial 

comparison is enabled by combining the survey data with postal code 4 (PC4) & 6 (PC6) 

statistics of the CBS 2023 in the Geul catchment (Centraal Bureau voor de Statistiek, 2025). 

From the survey, the average depth against the exterior wall (in centimetres) is taken as 

observed flood level, an example of a spatial map for the postal four and six areas is presented 

in Figure 16.  
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Subsequently, the simulated flood map is clipped on the postal code areas, whereafter the 

average simulated flood depth is calculated per postal code area. As a result, for each area a 

single simulated value is matched against a corresponding observed value to visualize the 

performance over the catchment. For the spatial performance the Mean Absolute Error (MAE) 

and the Root Mean Square Error (RMSE) are used. Subsequently, to evaluate the overall 

performance across the catchment the Nash-Sutcliffe Efficiency (NSE) is also included. These 

metrics together provide a robust assessment of the model’s accuracy and reliability in 

reproducing flood depths across the study area. First, the MAE indicates the average magnitude 

of error and is already outlined in Equation 4.2, then the RMSE emphasises larger differences 

between the simulated and observed values (outlined in Equation 4.11). Lastly, the NSE 

assesses how well the model simulates the depth relative to the mean of the observed data as 

outlined in Equation 4.12. The metrics NSE and RMSE are proven effective in evaluating flood 

depths against empirical data (e.g. Bermúdez et al., 2017; Khalaj et al., 2021; Manfreda & 

Samela, 2019), where the NSE ranges from < 0 (model simulates worse than taking the average 

from the observations) to 1 (where the model perfect fits the observations). NSE values 

exceeding 0.5 are considered acceptable and NSE values greater than 0.7 are considered very 

good (Nash & Sutcliffe, 1970). 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝐹𝑖 − 𝑂𝑖)2                  (4.11) 

𝑁𝑆𝐸 =  1 −
∑(𝑂𝑖−𝐹𝑖)2

∑(𝑂𝑖−𝑂̅)2                               (4.12) 

𝐹𝑖: Forecasted flood depth per postcode area 

𝑂𝑖:  Observed flood depth per postcode area. 

𝑂̅:  Average observed flood depth over the study area 

N: Total number of postal code areas 

In addition, the number of attendees per postal code area from the survey results of Endendijk 

et al. (2023) is used to weight the RMSE and MAE statistic. The advantage of using weighted 

statistics lies in the ability to account for the varying number of responses per postal code area. 

This ensures that areas with more data have a greater influence, which improves the reliability 

Figure 16: The observed flood levels at the exterior wall of buildings (street level) scaled on 4-digit (left) & 6-digit (right) 

postal code areas (Centraal Bureau voor de Statistiek, 2025). 
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of the analysis by providing a more representative evaluation of model performance across the 

catchment. 

Ultimately, the three metrics are calculated for each forecast, percentile, and lead time, included 

in a line plot. Moreover, the MAE and RMSE are also presented per postal code area for the 

ERA5 simulation to visualize the spatial differences across the study area. Based on the 

outcomes of the flood map evaluation, the second sub-question RQ2 can be answered: “What 

is the quality of flood forecasts from SFINCS for the July 2021 event at multiple lead times and 

how do variations in forecast data affect the outcomes of the SFINCS model?” 

In the end, the evaluated flood depths and extents form an essential foundation for the next step 

in this methodological framework, which involves assessing the flood impacts in the affected 

areas. 

4.3 From flood maps to impacts 
In the final step of this methodological framework, the flood forecasts are translated into 

tangible impact forecasts. This process involves integrating the extent of flood depths with 

exposure and vulnerability data to estimate the consequences for people, assets, and 

infrastructure.  

4.3.1 Input data 

Following the evaluation of the flood maps, this section introduces the input data that is required 

for the loss model used for estimating the forecasted flood impacts. By overlaying the flood 

outputs with detailed exposure datasets, such as building footprints and landcover data the GEB 

framework quantified the forecasted damage with use of pre-defined vulnerability curves. This 

quantification is conducted in a loss model which is included inside the GEB framework. This 

study uses exposure data from the Open Street Map (OSM) dataset and from the ESA landcover 

map (presented in Figure 13). Moreover, to determine the forecasted damage at the exposed 

elements, different vulnerability curves are used. 

Exposure data: 

To represent buildings, roads, and railways in the Geul catchment, OSM is used, which is a free 

web-based map service. OSM is an object-based dataset with a satisfactory completeness for 

building locations and footprint geometries for most developed countries and urban areas (Cerri 

et al., 2021; Sieg & Thieken, 2022). Moreover, this dataset is often used to estimate flood 

damages to buildings or infrastructure (e.g. Cerri et al., 2021; Koks et al., 2019; Sieg et al., 

2023). The roads are divided in four classifications: motorway, primary, secondary, and tertiary 

based on the study of Van Ginkel et al. (2021). For simulating the exposure of other landcover 

areas, this study uses the ESA World Cover 2021 database provided by Zanaga et al. (2022). 

Besides, this database is also used in a similar flood risk study of De Moel et al. (2011). 

Moreover, to explore the number of hits for critical facilities in the region, OSM is used to filter 

specific tags. This study uses the following amenity tags to explore the number of critical 

facilities that are hit across the different forecasts and lead times. The amenities that are 

included are: hospitals, health clinics, doctors, fire stations, police stations, schools, 

kindergartens, universities, pharmacies, ambulance stations, nursing homes, childcares, 

townhalls, embassies, bus stations, and social facilities. 
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Vulnerability curves: 

To connect the forecasted flood depth with the 

exposed elements in a catchment, 

vulnerability curves are applied in this study. 

Figure 17 illustrates the used vulnerability 

curves (derived from Bril et al. (2025)), where 

the relationship is presented between flood 

depth and the damage factor. This factor of the 

maximum damage is the damage fraction for a 

certain water depth and ranges from 0 (no 

damage) to 1 (maximum damage is reached) 

(Huizinga et al., 2017). As a result, the curve 

can show a higher damage ratio for a specific 

land use or asset type, meaning a greater proportion of the value is lost at a given flood depth. 

However, the total maximum damage value may still be lower for that function due to a lower 

economic value. 

This study uses different vulnerability curves from different studies. For the building structures 

and contents, the study uses the curves empirically derived from the surveys of Endendijk et al. 

(2023), where they are based on the local experienced damages after the 2021 flood event 

(Endendijk et al., 2023). For roads, the European depth-damage relationships and maximum 

damage estimations are used for different road types (Van Ginkel et al. 2021). Next, for railways 

Austrian curves and maximum damages are used from Kellermann et al. (2016), due to the lack 

of these data for the Netherlands (Nirandjan et al., 2024). Lastly, for nature and agriculture, the 

study applied curves developed by De Moel et al. (2014). Specifically, for nature only clean-up 

costs are considered as the maximum damage (De Moel et al., 2014).  

4.3.2 The loss model 

The loss model uses the function ‘object scanner’ within the GEB framework to calculate the 

forecasted damage by combining object-specific exposure data, forecasted flood extents and 

depths, and depth-damage relations (Koks, 2022). The model supports different geometry types 

to account for the distinct functions and land covers present in the study area. Dependent on the 

geometry, the forecasted damage is determined. For polygons and lines, it calculates the 

affected fraction using the exact extraction of the coordinates. For point geometries, the flood 

depth is sampled at the object’s location. Ultimately, this approach allows for a spatially 

detailed damage estimation based on the actual impact of flood depth. On the other hand, the 

estimation remains dependent on the resolution of the input data. 

  

Figure 17: The applied vulnerability curves in the study to 

connect exposed elements with the forecasted flood level. 
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4.3.3 Impact evaluation 

The last step in the methodological framework involves the processing of the calculated impacts 

for each forecast and lead time. By combining all the impact data, this step enables a 

comprehensive assessment of how the impact evolves with forecast timing. Ultimately, this 

analysis answers the final sub-question of the study RQ3: “How does the predicted flood impact 

vary across different rainfall forecasts and lead times, and what is the added value of using 

ensemble-based predictions for estimating local damages per function and area?”. 

The results are presented in the next section, including a summary table with all the impacts per 

forecast per function, a trend analysis where for each function a box plot presents the total and 

median damage (per building) per lead time, and the total number of buildings hit with a range 

for ensemble forecasts. Subsequently, a hit intensity map is created to visualize which critical 

facilities are hit and how often they are hit across all the different lead times. Lastly, an 

interactive map is created to get spatial insights, and a focused evaluation of key facilities in 

Valkenburg to highlight local impacts.  

In-depth research centre of Valkenburg 

To evaluate the impacts in more detail, the municipality of Valkenburg is chosen to conduct an 

in-depth impact evaluation. This municipality experienced extensive flood damages to 

residential buildings, critical infrastructure, and public services during the 2021 floods 

(Asselman et al., 2022; ENW, 2021). Given its exposure and vulnerability, Valkenburg provide 

valuable insights into the overall accuracy of the developed chain. By zooming in on the centre 

of Valkenburg, the analysis aims to better understand how well the forecasting system captures 

localized flood dynamics, impact variability, and forecast uncertainty in an urban context. This 

local-level assessment serves as a critical step in evaluating the operational applicability of the 

IBFFWS for early warning and disaster response at municipal levels.  

For this assessment the exposure data from OSM is used in order to determine the locations and 

geometries of the buildings and critical facilities. Besides, the vulnerability curve of the 

building structures (Figure 17) is used to determine impacts on buildings. This input data is 

used for the calculation of the flood and impact probability per building, where different 

exceedance thresholds are applied. Specifically, for the flood probability the first threshold is 

chosen to be 0.1 because the first damages occur at this threshold in the corresponding 

vulnerability curve (Bril et al., 2025; Sušnik et al., 2014). Subsequently, random water depths 

and impacts are chosen to visualize the difference in exceedance probabilities across different 

thresholds and lead times. Note that only ensemble forecasts are used in the probability 

calculations since they provide an uncertainty per lead time. In addition, for the impact 

probability is assumed that the buildings are residential buildings since this vulnerability curve 

is used. As a result, this impact is obviously not properly calculated for other functions such as 

critical facilities and stores that are present in the area.
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5.  Results 
This chapter presents the key findings derived from the methodology outlined in the previous 

chapter. The results are structured to follow the green output steps (4.1.3, 4.2.3, and 4.3.3) of 

the research framework described in Figure 8, starting with the evaluation of the precipitation 

forecasts (5.1), followed by the evaluation of simulated flood maps (5.2). Subsequently, the 

evaluation of impact estimations is discussed (5.3). The outcomes of 5.2 and 5.3 are analyzed 

both at the scale of the catchment and on the municipality scale, where the municipality of 

Valkenburg is chosen as an example (5.4). Through a combination of performance indicators 

and visual representations, this chapter aims to provide insights into answering the main 

research question (MQ):  

How could Impact-based Forecasts (IbF) from the hydrodynamic SFINCS model have been 

used to trigger effective early-warnings and actions, incorporating associated uncertainty for 

the 2021 flood in the Geul basin?  

5.1 The rainfall forecasts issued by ECMWF for the July 2021 flood 

in the Geul  
This section evaluates the rainfall forecasts that serve as key input for the hydrodynamic 

simulations. First, the analysis compares the different forecasts and visualizes the percentile 

approach (5.1.1). Afterwards, the performance of different forecasts is evaluated to assess 

statistical metrics for all the forecasts against the ERA5 dataset (5.1.2). Additional explanatory 

figures have been added in Appendix C. Ultimately, the findings of this paragraph will help 

answering the RQ1 of this study: 

How well do historic operational ensemble and deterministic forecasts relate to the observed 

precipitation patterns and totals of the July 2021 flood event, compared to ERA5 reanalysis 

data? 

5.1.1 Overview and visual comparison of the issued forecasts 

Figure 18 compares the maximum rainfall intensity across the Geul catchment for the processed 

ECMWF control and ensemble percentile forecasts against the ERA5 observations for the 

forecast initialization dates between 11 and 14 July. In general, the forecasts better align with 

ERA5 before the flood event (red line) compared to after the event. Especially the median 

ensemble percentiles (P50 & P75) tend to be closer to the ERA5 data, conversely to the more 

extreme percentile (P90 & P95) who present more extreme scenarios. Therefore, the percentile 

range (P25-P95) reflects the forecast uncertainty, but often overestimates the peak magnitudes, 

indicating an overestimation of extreme rainfall. However, none of the forecasts reproduce all 

three maximum observed rainfall peaks simultaneously and accurately since the forecasts often 

predict the peaks either earlier or later. Regarding the control forecast (green line), it exhibits 

distinct and variable behaviour across lead times, sometimes the forecast closely aligns with 

ERA5 and the median ensemble percentile (12 July 00 UTC forecast, aligns till the flood event). 
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Another initialization, the control forecasts behave differently and follows the more extreme 

percentiles (11 July 12 UTC forecast), where in some cases it even deviates completely from 

the other forecasts (11 July 00 UTC forecast on 13 July predicting a factor two more). These 

findings highlight that the control forecast represents a single deterministic realization without 

incorporated uncertainty, leading to significant deviations from both the ensemble forecasts and 

ERA5. Lastly, both deterministic and ensemble forecast tend to overestimate the ERA5 after 

the flood appeared, indicated by the drop of rainfall intensity of the ERA5 data.  

Following the analysis of rainfall intensity, Figure C.1 (see Appendix C) presents the 

corresponding maximum cumulative rainfall totals for each forecast initialization across the 

Geul catchment. In contrast to the intensity plots, the cumulative forecasts of both control and 

ensemble percentiles show a strong alignment with ERA5 for the longest lead times. As lead 

time decreases, the ensemble spread narrows but overestimates the maximum total rainfall 

compared to ERA5. Moreover, the total rainfall decreases over the lead times due to the length 

of the forecast. As the forecast length decreases the amount of time where the rain could be 

forecasted decreases. In addition, some rainfall peaks have already occurred for the latest 

forecast initializations.  

Building on the insights from Figure C.1, the spatial distribution of the cumulative rainfall 

further illustrates these patterns per grid cell as shown in Figure 19. The spatial maps of 

cumulative rainfall reveal clear patterns in both time and ensemble distribution. The rainfall 

increases across lead times until 14 July due to the shorter remaining forecast duration and the 

Figure 18: A comparison of the maximum rainfall intensity across the Geul catchment between the processed control (green 

line), ensemble percentile forecasts (blue spread) of the ECMWF, and the ERA5 observations (black line) for various 

initialization dates between July 11 and 14 2021. 
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rainfall peaks that fell earlier. Moreover, a horizontal increase is visible in each lead time, with 

higher precipitation amounts forecasted in the higher percentiles (e.g. P95) compared to lower 

percentiles (e.g. P25). In terms of spatial distribution, the ensemble and control forecasts predict 

more rainfall in the northern and eastern grid cells of the catchment, whereas ERA5 indicates 

more rainfall in the southeastern corner.  

Figure 19: Spatial distribution of cumulative rainfall (in mm) per grid cell over the Geul catchment for each lead time (in vertical direction), ERA5(most 

left), control (1 from left), and ensemble percentile forecasts (horizontal direction). 



Chapter 5    Results 

 

53 

 

This indicates a possible spatial mismatch between forecasted and observed distributions. In 

addition to the findings of Figure C.1, the more extreme percentiles are more aligned with 

ERA5 and control values until the 13 July forecast, after which the median percentiles (P50 & 

P75) align better. For the final forecast on 14 July 12:00, the lowest percentile (P25) 

corresponds most closely to ERA5 and the control forecast. However, again the control 

forecasts exhibit different behaviour across lead times as for some lead times it predicts more 

rainfall compared to the most extreme percentiles in Figure D.1 and Figure 19.  

Following on these insights, the next section evaluates the forecast performance using various 

verification metrics to compare the forecasts and to quantify the overall performance, reliability, 

accuracy, and spatial representativeness.  

5.1.2 Evaluation of forecast performance against ERA5 observations 

To evaluate the performance of the control and ensemble percentile forecasts, the forecasts are 

compared against ERA5 observations by using a range of verification metrics. First, the relation 

between the control forecast and ERA5 for the cumulative sum of rainfall is presented in the 

left scatterplot in Figure 20. Each point in the left figure represents a grid cell and the closeness 

to the diagonal 1:1 line indicates a minimal deviation between the forecasted and observed 

value. The control forecasts initialized at the 4, 16-, 40-, 64-, and 76-hour lead times illustrate 

a good fit to the 1:1 line, suggesting accurate predictions. In contrast, the forecast for 88-hour 

lead time is located below the line, indicating a systematic underestimation. Conversely, the 

forecasts at 52 and 28 hours are more dispersed and lie above the line, which reflects a more 

consistent overestimation. 

Moreover, on the right side of Figure 20 the maximum cumulative rainfall values across the 

catchment are presented for each ensemble percentile and lead time. This visualization 

complements the spatial rainfall patterns previously described, which illustrates how the 

ensemble captures the maximum values for each lead time. In line with Figure C.1, the highest 

percentiles (P90 & P95) are more aligned with ERA5 for the earliest lead times until the 13 July 

Figure 20: Scatterplot comparison of cumulative rainfall forecasts against ERA5. The left panel presents the relation of the 

spatially distributed cumulative rainfall per grid cell per lead time between the control forecast and ERA5. The right panel 

only illustrates the relation of maximum cumulative rainfall across the catchment per percentile per lead time between the 

ensemble percentile forecast and the ERA5 observations. 
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initialization (40 hour lead time). From that point onward, the median percentiles (P75 & P50) 

present a better alignment.  

Following the spatial and visual inspectation of the cumulative rainfall forecast accuracy, the 

statistical reliability of the ensemble percentile forecasts is assessed in Figure 21 using PIT 

diagrams. Across the different lead times, systematic deviations from the ideal reliable uniform 

distribution are presented in the data. This suggests limitations in forecast calibration, where 

for the longest lead times (88 to 76 hours) the curves lie below the diagonal 1:1 line till PIT 

value 0.6. As a result, crossing the 1:1 line around 0.6 indicates that observations tend to exceed 

most ensemble forecasts too often in the lower rainfall intesities, but are overestimated in the 

higher rainfall intesities. This suggests both underprediction and poor calibration since the 

observed values exceed the forecasted percentiles too frequent. At lead times (64 to 28 hours), 

the diagrams show steep jumps around Pit value 0 as a result of underdispersion. Tis suggests 

that the ensemble percentile spread is then too narrow, resulting in that the ERA5 observations 

fall outside the range of the forecast. For the lead times (16 & 4 hours) the PIT curves lie again 

below the diagonal line, which indicates underprediction. These patterns indicate that the 

ensemble percentiles are not calibrated with the ERA5 data and that they often underpredict the 

ERA5 observation as also illustrated in Figure 18.  

Figure 21: The Probability Integral Transform (PIT) diagrams across the different forecast horizons, with lead times ranging 

from 88 hours to 4 hours. Each subplot represents the CDF of the PIT values for every percentile separately. These values are 

compared to the ideal calibration 1:1 line. 
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Building on the reliability analysis, Table 2 provides a quantitative summary of the forecast 

verification metrics (CRPS, Bias, MAE, and FSS). In general, the ensemble percentile forecasts 

perform well for longer lead times (88 to 52 hours), with CRPS scores ranging between 0.52 

and 0.60 mm/h. This indicates a moderate alignment between the ensemble percentile forecasts 

and ERA5 during these early lead times. However, the CRPS score increases from the 40 hour 

lead time onward, reaching a maximum of 1.061 mm/h at 4 hours. This indicates a significant 

drop in forecast skill as lead times shortens. An exception is the 16 hour lead time, which 

maintains a low CRPS (0.589 mm/h).  

Regarding the bias and MAE, the ensemble and control forecasts generally shift from a small 

underestimation (negative bias) at longer lead times to slight overestimations (positive bias) 

from the 52 hour lead time onward. Additionally, from 52 hour lead time onward the standard 

deviation of the bias (σ) amplifies the overestimation for the entire ensemble as the bias further 

increases. In contrast, for the earlier lead times the standard deviation contradicts the 

underestimation since the deviation brings the entire ensemble closer to the ERA5 (0 mm/h 

bias). This suggests an increased overestimation in the ensemble forecast compared to the 

ERA5 closer to the event. Moreover, the control forecast show more fluctuations in the bias 

and have relative to the ensemble forecast a higher MAE. These verification metrics further 

support the findings of Figure 20 and 21 for the ensemble forecasts as the underprediction 

observed in the early and late lead times (88 & 76, 16 to 4 hours) is reflected in negative biases. 

In addition, the underdispersion for the median lead times (64 to 28 hours) reflects the increased 

MAE and CRPS. 

Table 2: Overview of verification metrics for the evaluation of the forecast performance against ERA5. These metrics describe 

the overall performance, accuracy and spatial representativeness of the rainfall intensity. Specifically, for the MAE and Bias 

is added the standard deviation to address the variability of the percentile members. 

 

VERIFICATION 

METRIC 

CRPS 

[mm/h] 

BIAS (σ) [mm/h] MAE (σ) [mm/h] FSS [-] 

Ensemble percentile 

forecast – Lead time 

    

88;18 0.595 -0.327 (+0.218) 0.801 (+0.057) 0.608 

76;18 0.537 -0.255 (+0.204) 0.753 (+0.064) 0.506 

64;18 0.520 -0.068 (+0.277) 0.824 (+0.121) 0.446 

52;33 0.581 0.041 (+0.256) 0.905 (+0.134) 0.423 

40;33 0.797 0.165 (+0.332) 1.167 (+0.132) 0.361 

28;33 0.950 0.059 (+0.296) 1.274 (+0.116) 0.353 

16;33 0.589 -0.011 (+0.321) 0.908 (+0.092) 0.471 

4;33 1.061 -0.212 (+0.274) 1.322 (+0.154) 0.443 

Control forecast – Lead 

time 

    

88;18 - -0.476 0.878 0.784 

76;18 - -0.180 0.871 0.917 

64;18 - 0.178 1.241 0.889 

52;33 - 0.357 1.211 0.876 

40;33 - 0.051 1.311 0.927 

28;33 - 0.325 1.549 0.859 

16;33 - -0.100 0.803 0.943 

4;33 - -0.639 1.124 0.771 
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Furthermore, the FSS score of the ensemble forecasts illustrate a consistent decline from 0.608 

at 88 hour lead time to 0.353 at 28 hours. Despite being deterministic, the control forecast 

achieve significantly higher FSS scores across all the lead times with a peak FSS score at 16 

hours of 0.943. This indicates that the control forecast better represent the spatial distribution 

of rainfall intensity of ERA5, which mirrors the findings of Figure 19. 

In addition to Table 2, Figure C.2 and Figure C.3 present the spatial distribution of the examined 

CRPS, Bias, MAE, and standard deviation (ensemble forecasts) scores. Regarding both 

forecasts, it is noteworthy that the CRPS, MAE and Bias scores are higher for the eastern grid 

cells and increases over the lead times. Again this is in line with the findings of Figure 19 where 

more rain was predicted in these cells. However this is not captured in the ERA5 data. 

Additionally, the control forecast reflects the trend a bit more across the catchment, resulting in 

fewer differences between grid cells. Moreover, the range of FSS scores over the different 

rainfall intensity thresholds are presented in Figure C.4 per lead time. The FSS boxplots reveal 

more clearly the difference of FSS scores over the different thresholds between the control and 

ensemble forecasts.  

Together with all the metrics, the ensemble forecasts offer a valuable representation of 

uncertainty as they illustrate signs of underprediction, underdispersion, and limited spatial skill 

at shorter lead times compared to the ERA5 observations. Conversely, the control forecasts 

demonstrate greater consistency and higher spatial agreement with the ERA5 observations 

across all lead times. The findings of the forecast performance form an essential foundation for 

the next step, where resulting forecasts are implemented to simulate flood maps in the next step. 
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5.2 The forecast of flood maps in the Geul catchment  
The next step in the analysis focuses on the evaluation of the forecasted flood maps in the Geul 

catchment. As a baseline, the flood map derived from the ERA5 precipitation is first assessed, 

whereafter the different flood maps of the forecasts and lead times are compared to this baseline 

map. This comparison will help answering the second sub research question (RQ2): 

What is the quality of flood forecasts from SFINCS for the July 2021 event at multiple lead 

times and how do variations in forecast data affect the outcomes of the SFINCS model? 

Figure 22 presents the flood map generated by SFINCS using the most extreme ensemble 

percentile (P95) at 88-hour lead time as an example. The map reveals that the most extensive 

flooding occurs in the downstream parts of the Geul River. Comparing the observed flood 

extent illustrated in Figure 14 with Figure 22, it appears that the model overestimates flooding 

near the catchment outflow. This deviation suggests an overrepresentation of flooding. 

Moreover, the depths presented in Figure 22 display water depth of approximate three meters. 

Due to the simulation of unrealistically high water depths single cells at the origins of the 

tributaries (as also identified in Appendix D) the legend in the figure depicts water depths up to 

9 meters. 

Building on the flood map of the 95th percentile for the 88-hour lead time, Figure 23 displays 

the extent of the different forecasts. The forecasts and ERA5 show significantly higher extents 

compared to the observed flood extents, as this extent is only limited to the main Dutch sections 

of the Geul River. Moreover, all forecasts show larger flood extents compared to the ERA5 

(green) extent, indicating that higher amounts of rainfall (presented in Figure 18 and C.1) do 

have effect on the flood extent. 

Figure 22: Simulated flood map across the Geul catchment based on the 88 hours 95th percentile 

forecast input. The flood depths are spatially represented in meters and range till three meters, 

but single grid cells simulate extraordinary water depths as addressed in Appendix C, leading 

to the scaling of the legend as presented in the figure. 
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Moreover, Figure 23 presents that the lower percentiles are relatively close to the ERA5 (e.g. 

25th percentile of the 88-hour lead time forecast). This behaviour is also noticed in the previous 

section 5.1 and again in Figure 23, the discrepancy between ERA5 and forecasted flood extents 

increases as lead times decreases. Regarding the ensemble extents, they show a minor 

increasing trend across the lead times, where the overall spread decreases. This indicates a 

decrease in uncertainty, presenting a more accurate simulated extent. Nonetheless, the final 

spread reflects an uncertainty of approximate three km2 at the 4 h lead time. Additionally, the 

lower percentiles in the boxplots remain relatively constant over the lead times compared to the 

most extreme scenarios.  

In terms of the simulated extents from the control forecasts (red) of Figure 23, the deterministic 

character is shown again. The extents often lay above the spread of the ensemble forecasts, 

which suggests a relative overestimation of the event compared to the other forecasts. Also, for 

these flood extents the 28-hour lead time remains an outlier.  

Building on the map presented in Figure 22, the extent is evaluated by calculating the different 

evaluation metrics described in the methodological framework. Figure 24 illustrates the spatial 

flood extent evaluation for the 88-hour lead time and 95th percentile precipitation forecast. The 

comparison between simulated and observed flood extent (Figure 14) presents a high number 

of false alarms (0.3) in the downstream areas, which indicates an overprediction. On the other 

hand, in the upstream regions of the measured extent (in light blue) the model fails to capture a 

significant portion of the observed extent. These mismatches in false alarms and misses are also 

reflected in the intermediate CSI score of 0.54.  

Figure 23: The simulated flood extents in km2 over the different lead times with the different forecasts as input. The blue shape 

represents the observed flood extent, the green shape the flood extent of ERA5, the red shape the flood extent of the control 

forecasts and the grey boxplots represent the five different percentiles of the ensemble percentile forecast. 
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Following the spatial flood evaluation, the different forecasted flood extents are evaluated over 

the lead times and displayed with the performance metrics in Figure 25. First, the hit rate shows 

a clear declining trend with increasing performance over decreasing lead times and decreasing 

performance over percentiles. This indicates that shorter lead times and higher percentiles result 

in better detection of the observed extent. The control forecast shows the highest hit rate at the 

28-hour lead time, whereafter a general decline can be observed. In contrast, both the false 

alarm rate and CSI index remain relatively constant over the lead times but show similar 

behaviour as the hit rate performance. Simultaneously, lower percentiles score lower false 

alarms rates, while higher percentiles and the control forecast have higher false alarm rates. As 

a result, the higher hit rates and false alarm rates balances the CSI index values around 0.55-

0.6. This indicates that despite higher detection rates the overall fit does not significantly 

improve, suggesting that the forecasts show similar mismatches as Figure 24. Notably, the 

control forecast displays an unusual peak at the 28h lead time across multiple metrics.  

Figure 25: The performance of the flood extents per forecast type over the different lead times and percentiles with lighter 

colours representing the lower percentiles, the darker colours the higher percentiles, anthracite representing the control 

forecast and the green shape represents the ERA5 scores. 

Figure 24: Spatial evaluation of the simulated flood extent with the 88 hours 95th percentile 

forecast as input against the observed flood extent of Slager et al. (2021). The hits are 

represented in light green, the false alarms in orange, the misses in red, the measured area in 

light blue, and the total flood extent in black. 
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Moreover, the fourth subplot in Figure 25 presents the cumulative rainfall over the grid. Again, 

the lower percentiles are more aligned with the ERA5 compared to the higher percentiles and 

the control forecast. These forecasts overestimate the cumulative precipitation compared to 

ERA5. However, this has limited impact on the overall performance (CSI index). 

The evaluation continues with the evaluation of the simulated flood depths for 88 h lead time 

and 95th percentile forecast by first focusing on the spatial evaluation based on postal code 

statistics PC4 and PC6. Figure 26 presents the PC4 and PC6 spatial evaluation, where for the 

PC4 postal code areas the MAE ranges between 0 and 0.4 meters and the RMSE from 0 to 0.16 

meters. In contrast, for the PC6 postal code areas the MAE spans from 0 to 2.5 meters and the 

RMSE from 0 to 0.25 meters, reflecting a greater spatial detail but also more variability. The 

flood depth analysis reveals that the municipality of Valkenburg has the highest MAE and 

RMSE across the PC4 and PC6 postal code levels. However, the magnitude of the errors is 

significant higher in the PC6 postal code level due to the increased spatial detail of these postal 

code zones. Furthermore, only a limited number of postal code areas reported observed 

flooding, suggesting that much of the modelled flood extent lies outside the areas with recorded 

impacts. As a result, especially for the detailed postal code areas the evaluation can be better 

visualized on a municipality scale rather than at the full catchment scale regarding the PC6 

statistics.  

 

Figure 26: The spatial evaluation of the simulated flood depths for 88 h lead time 95th percentile ensemble 

against the observations from the survey of Endendijk et al. (2023). This evaluation is based on the 

aggregation of the flood depths per postal code area detail level (PC4 and PC6) 
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Building on the spatial evaluation of Figure 26, Figure 27 presents the evaluation metrics for 

the different forecasted simulated flood depths across the Geul catchment against the household 

survey data of Endendijk et al. (2023). The figure distinguishes the metrics per postal code 

detail level, forecast type, lead times, and weighted and unweighted statistics. In general, the 

control forecast shows a sharp negative discrepancy at lead time 28 hours in all metrics, where 

an exception is visible in the weighted PC4 MAE metric. 

For the unweighted statistics, the PC4 evaluation shows a stable performance across the lead 

times with MAE values ranging from 0.17 to 0.28 meters, RMSE from 0.23 to 0.34 meters, and 

NSE scores between 0.3 and -0.4. Across the metrics, the lower percentiles (P25-P50) align 

more closely to the performance of ERA5. Especially at earlier lead times (88h & 76h) the 

performances matches the ERA5 performance, while the higher percentiles and the control 

forecast tend to overestimate the flood depths. In addition, the NSE values below 0.0 for the 

higher percentiles and the control forecast indicate that the model does not score better than 

taking the average out of the observational data. As a result, the NSE values suggest that the 

higher percentiles and control forecast does not describe the flood depths well and the lower 

percentiles and ERA5 do not score an acceptable NSE score (>0.5) either. Though, it is 

unexpected that the higher percentiles score worse over the different metrics regarding flood 

depth. 

For the PC6 evaluation, the simulated flood depths perform less compared to the PC4 

evaluation. The forecast errors increase significantly at longer lead times and lower percentiles, 

which can be observed in the degradation over the lead times for the MAE and RMSE metrics. 

Conversely, higher percentiles and the control forecast remain more constant over the lead 

times, where again the ERA5-based simulation performs similarly to the low percentile 

forecasts at early lead times. Across the PC6 evaluation metrics the MAE remains between 0.44 

and 0.50 meters and the NSE values are slightly better compared to the PC4 postal code areas, 

as the higher percentile score better. However, these NSE values are still not acceptable. 

Turning to the weighted statistics the trends are smoother, where postal code areas with more 

household responses carry greater influence. First, the NSE statistics remain unchanged since 

this metric is not affected by weighting. Over both the PC4 and PC6 the control forecast is now 

more aligned in the centre of the ensemble, except for the 28h lead time. For PC4, the weighted 

MAE increases slightly with lead time and lower percentile, where the percentile ranking has 

inverted. Higher percentiles (P75-P95) now show (as expected) lower errors, while lower 

percentiles show higher errors. This pattern indicates a shift in performance under weighting. 

In addition, this pattern also applies for the RMSE. Moreover, for the PC6 statistics this trend 

is amplified, where the error increases more sharply for low percentiles and early lead times. 

This highlights the sensitivity to poorly performing ensemble members. Overall, the results 

show the influence of weighting, spatial resolution, forecast type, and forecast lead time on 

model performance. In comparison to the ensemble forecast performance, the performance of 

the control forecast depicts a different behaviour with errors larger than the ensemble forecasts. 

Apart from the peak at the 28-hour lead time, the control forecast presents also a decrease in 

performance across the lead times. 
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These findings underline the differences in reliability of forecasted flood extents and depths 

across different lead times and forecast types. To further examine the practical value of the 

different forecasts, the next section explores the translation of the forecasted flood maps into 

tangible impacts. 

  

Figure 27: Evaluation metrics of forecasted flood depths across the Geul catchment using household survey data, shown for 

both PC4 and PC6 postcode levels. Each subplot displays a metric with the Mean Absolute Error (MAE) (blue at left), Root 

Mean Square Error (RMSE) (orange at centre), and Nash-Sutcliffe Efficiency (NSE) (green at right) for ensemble percentile 

forecasts (gradient of the colour), ERA5 (green shape) and control forecasts (anthracite) over various lead times. Metrics for 

both postal code areas are presented in both unweighted (top two rows) and weighted (bottom two rows) form to account for 

the number of survey responses per postcode. 
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5.3 Forecasted impact in the Geul catchment 
The last step in the analysis of the methodological framework focuses on the forecasted flood 

impacts. By translating the forecasted flood maps into affected areas, this section evaluates how 

variations in rainfall forecasts propagate through the modelling chain to influence impact 

estimations by answering the final research sub question RQ3: 

How does the predicted flood impact vary across different rainfall forecasts and lead times, 

and what is the added value of using ensemble-based predictions for estimating local 

damages per function and area? 

Table 3 provides a quantitative summary of the estimated flood impacts across different forecast 

type, lead time, and ensemble percentiles. This overview allows a comprehensive comparison 

of rainfall, flood extents, number of affected buildings, total damages across all the exposed 

assets, median damages per building, and the exposed critical facilities. 

First, the table indicates that the variations in cumulative rainfall across lead times and 

percentiles is directly translated to proportional changes in flood extent, indicating an 

intermediate influence of total rainfall on the spatial extent of flooding. Additionally, for the 

lowest lead time the control forecast simulated an impact estimate identical to ERA5, although 

having a larger flood extent.  Since the flood extent often differs with the ERA5 extent, the 

influence of the location of the flood extents is illustrated in the calculation of the damages. For 

example, the 40h control forecast simulated a flood extent of 14 km2 and forecasted twice as 

much precipitation but simultaneously the estimated total damage is predicted lower compared 

to ERA5. In this case, a higher flood extent does not necessarily lead to higher total damages. 

This example highlights the added value of the buildings hit column since it presents the 

distribution of the extent. As the number of buildings hit increases it means that the flood extent 

is more distributed in urban areas. 

Regarding the control forecasts, they constant forecasted higher cumulative precipitation 

amounts and flood extents as also presented in Figure 18, 23 and C.1. Moreover, again 28h lead 

time depict peak impacts with 317 mm of rainfall, 18.18 km2 flood extent, 7855 buildings are 

affected, and a total damage of € 5.66*108. These estimates significantly exceed the ERA5 

baseline simulation. However, the control forecasts present fluctuations in its forecasts since 

the 16h lead time estimates lower impacts. Therefore, the control forecasts display more 

variation across lead times, as it provides a single deterministic estimate per lead time. 

In contrast, the ensemble percentile forecasts present a more stable range of impact estimates. 

The more extreme percentiles (P90 & P95) constantly predict more precipitation, flood extents, 

damage estimates and number of affected buildings and critical facilities. As a result, at longer 

lead times (88h till 52h) these extreme percentiles are more aligned with ERA5, indicating a 

minor underprediction of impact estimates. However, at shorter lead times (40h till 4h) the more 

median percentiles (P50 & P75) correspond with ERA5.  

Moreover, the number of affected critical facilities by simulated floods tend to be constant, 

except for higher percentiles and the early lead times where the hits increase up to sixteen 

facilities. 
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Table 3: An overview with propagation of different rainfall forecasts to impact estimations in terms of total damages in 

euros, total number of buildings hit, median damage per building, and the number of critical facilities that are hit. 

 

Forecast 

type 

Lead time 

[h] 

∑ Rainfall 

[mm] 

Flood 

extent [ 

km2] 

Buildings 

Hit [N] 

Total 

Damage [€ 

∗ 𝟏𝟎𝟖] 

Median 

damage per 

building [€] 

Hit critical 

facilities 

[N] 

ERA5 - 89 9.86 5871 3.91 29693 11 

Control 

forecast 

       

 88;18 198 13.01 5162 3.37 27738 13 

 76;18 194 12.69 4938 3.18 26679 13 

 64;18 182 14.52 6027 4.17 30445 13 

 52;33 240 14.86 6156 4.24 30121 14 

 40;33 196 14.02 5646 3.73 28786 13 

 28;33 317 18.18 7855 5.66 33408 17 

 16;33 243 15.56 6398 4.40 30762 15 

 4;33 210 14.36 5871 3.91 29693 14 

Lead time [h] Ensemble 

percentile 

forecast 

      

88;18 25th  96 9.71 3379 2.20 23726 12 

 50th  142 11.48 4450 2.75 23931 13 

 75th  176 11.67 4445 2.85 25889 13 

 90th  223 12.48 4938 3.14 26678 13 

 95th  217 12.67 4950 3.19 26888 13 

76;18 25th  142 12.04 4522 2.86 24802 13 

 50th  152 11.45 4416 2.81 25015 13 

 75th  179 13.14 5184 3.36 27121 13 

 90th  245 15.36 6129 4.20 30573 15 

 95th  267 15.24 6093 4.15 30267 15 

64;18 25th  136 11.08 4090 2.57 24108 13 

 50th  136 10.98 4175 2.67 25325 13 

 75th  198 13.13 5324 3.41 27395 13 

 90th  246 14.30 5808 3.90 29655 14 

 95th  251 13.82 5645 3.82 29418 14 

52;33 25th  142 11.37 4315 2.77 25467 13 

 50th  142 11.65 4335 2.81 26388 13 

 75th  181 11.88 4540 2.95 27255 13 

 90th  221 13.28 5300 3.50 28694 13 

 95th  270 14.15 5755 3.79 29404 14 

40;33 25th  149 11.36 4264 2.74 25619 13 

 50th  176 12.33 4845 3.11 27089 13 

 75th  205 14.24 5743 3.83 29310 14 

 90th  252 15.04 6253 4.33 30921 14 

 95th  258 15.09 6383 4.47 31288 15 

28;33 25th  149 12.45 5012 3.35 28503 13 

 50th  168 13.54 5514 3.79 30008 13 

 75th  183 13.64 5597 3.79 29777 13 

 90th  230 14.11 5763 3.92 29949 13 

 95th  250 15.86 6569 4.61 31508 16 

16;33 25th  125 11.53 4354 2.84 27056 13 

 50th  160 13.12 5333 3.59 29114 13 

 75th  178 13.66 5543 3.74 29205 13 

 90th  219 13.86 5633 3.87 30036 13 

 95th  246 14.95 6107 4.22 30714 15 

4;33 25th  153 12.94 5260 3.51 28586 13 

 50th  167 13.77 5627 3.77 29156 13 

 75th  208 15.02 6160 4.22 30621 15 

 90th  248 15.81 6580 4.52 30832 15 

 95th  272 16.16 6816 4.66 31131 16 
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To continue the impact evaluation, the total damage across the different forecast types and lead 

times is also outlined in Figure 28. In the figure, an increasing trend can be observed over the 

lead times and over the percentiles, where the percentiles show a large spread. This spread 

contributes to the uncertainty description of the event as the percentiles deliver a collection of 

probable outcomes. This highlight the strong message that the control forecasts are different 

than the median of the ensemble, and that it should always be considered next to the ensemble 

members to address the complete uncertainty. Once again, the 28h lead time highlights that the 

control forecast has a large peak compared to the other lead times. 

Building on the total damage visualization, the different parameters of Table 3 are presented in 

Appendix E. The figures E.1, E.2, and E.3 illustrate the total damage per function, the total 

number of buildings that are hit, and the median damage per impacted building. For the total 

damage per function in Figure E.1, a similar trend is presented as described for the total 

damages across the lead times. The figure indicates that the damages to the buildings are the 

largest part of the total damage since they have the highest impacts compared to the other 

functions. Another noteworthy finding is that all the three figures show a decreasing spread 

moving toward the event. Where again the 28h lead time of the control forecast shows a large 

peak compared to the other forecasts. Specifically, looking at Table 3 the estimates of the 

control forecast at that lead time lay far from the other forecasts, which in the end indicates that 

these estimates are outliers. 

 

Figure 28: The total damages across the Geul catchment displayed for each forecast type and lead time. The total damages 

include the damage to forests, agriculture, infrastructure and building structures, which are derived from the vulnerability 

curves. The control forecast is represented in Red, the ERA5 data in green, and the ensemble percentile forecasts with the 

grey boxplots.  
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Moving to the critical facilities, the amenities in the catchment are merged with the flood maps 

to count the number of hits across all the forecast types and lead times. Figure 29 presents the 

hit intensity per critical facility, where most hits are located more downstream of the catchment. 

Additionally, schools are frequently hit whereafter several fire stations and police stations are 

hit. Interestingly, almost all the facilities are hit with every forecast, except for a clinic in Gulpen 

which is hit only once. 

These findings underline that the estimates of the impacts are aligned across the lead times 

resulting in a lower range of possible estimates reaching the lower percentiles. In addition, 

together with increasing impacts over the lead times the reliability of the estimates increases. 

To further examine the practical value of the modelling chain, the next section explores the 

impact chain for a municipality specifically. This is of an added value to explore the forecasts’ 

performance at a more localized spatial scale to assess how well the system captures impacts at 

community or building levels. In the end, the results will be expanded with a finer spatial 

resolution, offering a deeper understanding of forecast utility in areas with high vulnerability 

and exposure. 

 

Figure 29: The hit intensity of critical facilities across all the forecast types and lead times with the 

shape describing the critical amenity and the colour the ratio of hits across the entire collection of 

forecasts. 
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5.3.1 Valkenburg as case study for detailed impact analysis 

To complement the catchment-scale analysis, an additional in-depth evaluation is conducted 

for the municipality of Valkenburg. This section narrows the focus to the localized validation 

of the forecasted flood maps and more in-depth impact assessments. Specifically, it evaluates 

the damages to individual functions or buildings in the center of Valkenburg. Moreover, 

additional supporting figures are included in Appendix F.  

First, Figure 30 presents the forecasted flood map for Valkenburg based on the 95th percentile 

of the ensemble forecast with an 88h lead time as an example. The figure illustrates extensive 

flooding in the central part of Valkenburg with water levels reaching up to 2 to 2.5 meters. In 

addition, significant flooding is simulated along the riverbanks near Houthem, where the flood 

depths in this area are relatively low compared to those in Valkenburg. 

Building on the flood map presented in Figure 30, Figure 31 visualizes the validation results of 

the flood extents across all the lead times and forecast types. Compared to the broader 

catchment-level evaluation presented in Figure 24, the performance metrics depict a significant 

improvement. Specifically, both the hit rates and CSI indices have increased with a peak 

performance (CSI > 0.8) at 16h lead time, while simultaneously the false alarms decreased. 

This indicates that the forecasts show an accurate performance (CSI > 0.7) in detecting the flood 

areas within the municipality of Valkenburg, which in the end highlight a stronger alignment 

between simulated and observed flooding patterns. In addition, Figure F.1 illustrate the spatial 

evaluation of the 88h lead time with the 95th percentile ensemble forecast as input. This figure 

supports the strong alignment where only minor misses are displayed on the edges of the extent, 

while no false alarms are detected. 

Figure 30: Simulated flood map across the Valkenburg Municipality based on the 95th percentile 

forecast with a lead time of 88 hours. The flood depths are spatially represented in meters and the 

river geometry has been removed from the visualization to emphasize the flooding outside the 

riverbanks. 
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Figure 31 further reveals that across all three-performance metrics, the forecast performance 

generally declines as lead time increases. Additionally, there is a clear performance discrepancy 

between the higher percentiles (P75, P90 & P95) and the lower percentiles (P25 & P50), where 

the lower percentiles constantly showing lower scores and a steeper decline over increasing 

lead times. Moreover, the control forecasts have a similar performance as the higher percentiles, 

although the 28h lead time still shows a peak in the hit rates and false alarms. However, this is 

again not reflected in the CSI index. Note that for the higher percentile ensemble forecasts and 

the control forecast the CSI index remains above 0.7, suggesting a strong alignment throughout 

the range of the forecasts. Regarding the ERA5 simulation, the CSI index depict a score of just 

below 0.7, which can be interpreted as an intermediate performance. Furthermore, the lower 

percentiles (P25 & P50) drop below the CSI threshold after the 40-hour lead times. 

In contrast to the increased performance of the flood extent simulation, Figure 32 displays the 

reduced performance in simulating flood depths within the municipality of Valkenburg. In 

general, both the MAE and RMSE are higher compared to the catchment-scale flood depth 

analysis in Figure 27. The figure outlines that the MAE values range from 0.55 to 0.7 meters 

and the RMSE values between 0.8 and 0.95 meters. Like earlier findings, the higher percentiles 

show more stable performance across lead times, where in contrast the lower percentiles have 

greater variability and higher errors. Additionally, the ERA5 scores correspond more with the 

lower percentiles. Nonetheless, for the in-depth analysis the control forecasts exhibit a more 

moderated performance compared to Figure 27, which is more in line with the trend and 

magnitudes of the ensemble forecasts. The NSE values further reflect the reduced performance, 

where the values remain around 0.1 to -0.1 for the higher ensemble percentiles and control 

forecasts. For the lower percentiles and the ERA5 simulation, the NSE values further decreases 

up to -0.4. This indicates that in terms of the flood depth simulations, the model performs poorly 

against the survey data for both the catchment scale and this in-depth analysis for Valkenburg. 

In addition, Figure F.2 presents the spatial evaluation of the simulated flood depths shown in 

Figure 30. Note that the largest errors are concentrated in the center of Valkenburg, which 

suggests that the model constantly overestimates the flood depths compared to the survey 

responses.  

Figure 31: The performance of the flood extents in Municipality Valkenburg per forecast type over the different lead times and 

percentiles with lighter colours representing the lower percentiles, the darker colours the higher percentiles, anthracite 

representing the control forecast and the green shape represents the ERA5 scores. 
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Building on the evaluation of the flood maps, the analysis now shifts focus to the forecasted 

impacts at a more detailed level. First, Figure F.3 displays a similar trend for the total damages 

across the lead times compared to Figure 28. Looking at the median ensemble, it appears that 

the municipality contributes approximately 25 to 30% to the total damages’ prediction in the 

entire impact assessment in the Geul. Moreover, Figure 33 presents the hit intensity per critical 

facility across all forecast types and lead times in the municipality. The figure reveals that all 

the forecasts (hit intensity of 1) predicted impacts for several facilities located on the southern 

riverbank in Valkenburg.  

Figure 32: Weighted evaluation metrics of forecasted flood depths across the municipality of Valkenburg using household 

survey data, shown for PC6 postcode levels. Each subplot displays a metric with the Mean Absolute Error (MAE) (blue at left), 

Root Mean Square Error (RMSE) (orange at centre), and Nash-Sutcliffe Efficiency (NSE) (green at right) for ensemble 

percentile forecasts (gradient of the colour), ERA5 (green shape) and control forecasts (anthracite) over various lead times. 

Metrics are presented in a weighted form to account for the number of survey responses per postcode. 

Figure 33: The hit intensity of critical facilities across all the forecast types and lead times in the municipality of 

Valkenburg with the shape describing the critical amenity and the colour the ratio of hits across the entire collection 

of forecasts. Transparent shapes show the critical facilities that are not hit by any forecast. 
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To enable targeted warnings for specific regions, stakeholders, and facilities, it is essential to 

understand flood impacts at the building level. Therefore, the three affected key facilities in 

Valkenburg (Figure 33) are the primary school, the fire station, and the social facility 

‘Oosterbeemd’, which are selected for further analysis. Figure 34 outlines the forecasted water 

depths at the exterior walls of the buildings across the lead times and forecast types. For the fire 

station, a consistent pattern emerges across both the ensemble and control forecasts, where they 

show a minor increase over the lead times with a declining spread. Additionally, although the 

deterministic realization of the control forecast, the deviation with the ensemble spread is not 

significantly high. Besides, note that ERA5 also simulated a water depth which corresponds 

with the other forecast types. From the longest lead time (88 hours) onward a depth of 

approximately 2.5 meters is forecasted, which ultimately rises to 2.8-3 meters by the 4-hour 

lead time. Although the model seems to overestimate the flood depths, Figure 34 indicates the 

strength of combining the ensemble and control forecast. 

Furthermore, a similar trend and forecast behaviour is observed for both the primary school and 

care facility. Apart from the lower water depth predictions, in particular the primary school 

shows a larger uncertainty in the ensemble forecasts with larger spreads in water depths up to 

the 40-hour lead time. In addition, the extraordinary behaviour of the control forecast at the 28-

hour lead time is also present in the water depth for these two facilities. Besides, note that the 

ERA5 simulation does not predict flooding at the location of the primary school. 

  

Figure 34: The predicted water depths at three selected critical facilities in Valkenburg across all forecast types and lead 

times: fire station Valkenburg (top figure), primary school (centre figure), and social facility Oosterbeemd (bottom figure). 

The control forecast is represented in a red diamond, the ERA5 data in a green diamond, and the ensemble percentile forecasts 

with the grey boxplots. The facility‘ location is visualized in a map with a red circle presenting the location of the facility in 

the corresponding left graph and with blue for the other facilities presented in the figure.  
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Building on the critical facility analysis, the flood probability per building in the centre of 

Valkenburg is displayed in Figure 35 for three flood depth thresholds 0.1 m, 0.95 m, and three 

meters. The figure reveals that for the 0.1 m and 0.95 m thresholds, the number of buildings 

with higher flood probability increases as lead time shortens. A substantial number of buildings 

already show a 100% exceedance of 0.1 meter, where first for the longest lead times only the 

buildings near the riverbank show this probability. However, as the lead time decreases more 

buildings get affected. Regarding the 0.95 m threshold, the exceedance probabilities vary more 

often across buildings, indicating that for some buildings it is uncertain that this depth will be 

exceeded. In contrast, the 3-meter threshold is often not exceeded with only a few buildings 

showing a 100% probability from the longest lead times onward. This indicates that severe 

flood depths of three meters are not predicted frequently during this event.  

Subsequently, a similar trend is illustrated in Figure 36 where the impact probability is 

calculated for the ensemble forecasts using financial damage thresholds of €100,000, €500,000, 

and €1,000,000. As with the flood depth exceedance probability presented in Figure 35, the 

findings indicate a clear increase in the number of buildings with high probabilities near the 

riverbank as the lead time shortens. For the lower thresholds, many buildings have a high 

probability for surpassing the €100,000 threshold or in lesser amounts for the €500,000 

threshold. The €1,000,000 threshold reflect a similar pattern of significant impacts as is 

indicated in the 3-meter flood depth threshold. These results suggest that ensemble forecasting 

provides valuable probabilistic insights into the financial flood impacts at a building level.  

Ultimately, the final findings presented in Figures 34, 35 and 36 indicate that, despite model 

uncertainties, the ensemble forecasts constantly forecast flood depths at a building level well in 

advance of the event with a decreasing uncertainty closer to the event. This early prediction of 

water depths and impacts suggests that impact-based warnings could be issued on time for early 

action. 
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Figure 35: The exceedance probability of flood depths for individual buildings in the centre of Valkenburg across three water depth thresholds: 0.1 m 

(top figure), 0.95 m (centre figure), and 3.0 m (bottom figure). In addition, the area for the in-depth evaluation (blue line) is presented in the top right 

figure in perspective with the municipality border (black line). Besides, to improve the understanding of the figure is the flood map (in ice blue) presented 

with the 95th ensemble percentile as an example for each lead time. 
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  Figure 36: The exceedance probability of financial impacts for individual buildings in the centre of Valkenburg across three impact thresholds: €100,000 

(top figure), €500,000 (centre figure), and €1,000,000 (bottom figure). In addition, the area for the in-depth evaluation (blue line) is presented in the top 

right figure in perspective with the municipality border (black line). Besides, to improve the understanding of the figure is the flood map (in ice blue) 

presented with the 95th ensemble percentile as an example for each lead time. 
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6. Discussion 
This study has evaluated the performance of a flood impact-based forecasting model for the 

Geul catchment, using the GEB framework. The modelling framework consisted of the 

initialization of the hydrological CWatM model (out of scope), the hydrodynamic SFINCS 

model, and a loss model to translate the hydrological outputs to impacts. This chapter elaborates 

the limitations and the implications of the study to assess the results in a broader perspective. 

In addition, the chapter discusses in detail what is needed for future studies (academical 

recommendations) and what is needed to get the developed system operational (practical 

recommendations). First, the limitations are discussed to provide a more nuanced understanding 

of the findings for the entire modelling chain. 

6.1 Limitations in the modelling framework 
Addressing the limitations of this study is essential for the interpretation of the key findings. 

Therefore, the main uncertainties inside the input data, SFINCS model, and in the developed 

chain are elaborated. 

Limitations in the precipitation data 

First, this study has used different sources of rainfall data to force the GEB framework. Starting 

with ERA5 ECMWF reanalysis data, this data is used to create a reference baseline in the study. 

Although ERA5 is widely used in the fields of meteorology and hydrology and provide 

physical, spatial, and temporal consistent long time series at a global scale (Gomis-Cebolla et 

al., 2023), several studies have discussed important limitations that must be considered when 

reanalysis are used as a reference (e.g. Bližňák et al., 2022; Da Silva et al., 2024; Gomis-Cebolla 

et al., 2023; Wu et al., 2022). These studies conclude that ERA5 often tends to underestimate 

extreme precipitation intensities while in contrast it overestimates light and moderate rainfall 

events, particularly in summer conditions. In addition, it is important to note that ERA5 is a 

reanalysis dataset which is in fact a reconstruction. Therefore it cannot be used for operational 

decision-making (Hersbach et al., 2020). 

Apart from the reanalysis data, this study also utilized historic operational ECMWF 

precipitation forecasts rather than hindcasts to simulate the 2021 flood event. However, the used 

forecasts deviated from the original operational forecasts since the applied forecasts uses full 

gaussian grids (e.g. F640) instead of the original octahedral reduced Gaussian grids (e.g. O640). 

While both grid types have similar resolutions (e.g. 640 lines), the octahedral grids ensure 

higher computational efficiency with a non-uniform longitudinal resolution leading to spatial 

irregular grids. These grids represent fewer points near the poles and more near the equator 

(Malardel et al., 2015). In contrast, full gaussian grids maintain regular spacing in both 

longitudinal and latitudinal direction (Malardel et al., 2015). For this reason, regular spacing is 

an advantage in terms of expecting spatial data on regular and constant coordinates for small 

study areas as the Geul catchment. Nonetheless, this approach required an interpolation from 

original grids towards regular by the ECMWF within the download of the forecasts. This may 

have shifted local rainfall on a small scale, leading to a relatively more distributed rainfall over 

the regular grid cells. Moreover, Van Heeringen et al., (2022) concluded that the extreme
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precipitation was forecasted at different moments for the Geul catchment by different 

meteorological services. For example, ICON-EU (from the German Meteorological Service) 

predicted the extremes earlier compared to ECMWF. As a result, using a different 

meteorological service could lead to different impact estimates. 

Limitations in the SFINCS model 

To simulate flood maps for each forecast, SFINCS (v2.1.3) is applied due to its efficient 

character for simulating hydrodynamical processes with limited computational cost and good 

accuracy. However, originally the model is developed for the simulation of compound coastal 

flooding (Leijnse et al., 2021). Therefore, it is uncertain whether the pluvial components of the 

2021 floods is fully captured in the modelling since the model is not evaluated or proven 

effective yet in small riverine catchments like the Geul. Although, the pluvial components are 

proven in coastal areas (e.g. Beveren, 2022; Sebastian et al., 2021) one notable limitation in the 

hydrodynamic modelling component of this study is the absence of detailed water infrastructure 

such as culverts, weirs in the SFINCS setup. Specifically, this simplification has likely 

contributed to the substantial number of false alarms observed in the estuary of the Geul of the 

simulated flood maps. Previous studies (e.g. Hailemariam et al., 2013; Fallowfield & Motta, 

2024) have also identified the absence of water infrastructure as a factor leading to flow routing 

errors and water accumulation in flood simulations. In addition, analysing the observed extent 

it appears that the extent decreases after the Juliana channel. The reason for this is that during 

the 2021 flood the Geul estuary saw extremely high-water levels at peak times due to a 

combination of high discharges on the Geul and the Meuse rivers. De Jong and Asselman (2022) 

investigated in the estuary the effects of local barriers in the landscape such as bridge abutments. 

They concluded that the local water structures caused rising water levels up to several meters, 

allowing the water moving more northwards in the direction of Bunde. A vital role played the 

siphon under the Juliana channel where the water from the Geul flows into the Meuse. This 

structure appeared to have limited capacity which could not manage the discharge of the flood 

event. In addition, tubes of the siphon were clogged with silt and other natural materials which 

decreased the capacity even more (De Jong & Asselman, 2022). 

Furthermore, the overestimated flood depths as shown in Figure 27 and 32 could be the result 

of the missing structures (Figure D.3). However, it is also important to acknowledge the 

limitations of the used survey data itself since the observations are derived from survey 

responses. These responses lack data of precise local observations due to its anonymous 

character, resulting in spatial uncertainty. Ultimately, this limits the accuracy of the validation 

in areas with high spatial variability in water depths such as urban areas.    

Limitations in the impact estimations and the developed modelling chain 

Finally, this study did not apply national used standards such as the Dutch Standard Damage 

Method (SSM). This is a national established model used to estimate flood damages across 

various assets and buildings by the government (Van Den Braak et al., 2020). As a result, the 

impact estimations rely on more generic vulnerability curves. Apart from the residential curves 

constructed from the surveys of Endendijk et al. (2023), these generic curves may not reflect 
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the most recent and location specific insights. Knowing the limitations of the survey and the 

depth-damage curves, the impact estimations could have been underestimated.   

While the model chain presented in this study demonstrates an intermediate (Figure 25) to 

strong (Figure 31) performance for the Geul catchment flood extent, its transferability to other 

regions may be constrained due to different hydrological triggers (e.g. snow melt or rain on 

saturated soils). Moreover, it could be also constrained due to different climates or landscapes 

(e.g. fewer altitude differences) and its dependency on high quality spatial datasets. Changes in 

these factors could affect the performance of the chain. In addition, considering the applicability 

of the impact module, the transferability is limited due to the usage of location specific curves 

regarding the residential impacts and due to the lack of existing detailed vulnerability curves 

such as for critical facilities like fire stations (Merz et al., 2020; Nirandjan et al., 2024). 

6.2 Implications of the key findings  
The identified limitations highlight several implications for the interpretation of the results of 

the study. First, the underestimation of ERA5 in perspective of this study could have affected 

the accuracy of the baseline flood map and the evaluation of the forecast performance. Hence, 

the limitations of the reanalysis must be acknowledged when interpreting the flood extents and 

forecasts evaluations. It is important to nuance the difference between ERA5 and the different 

forecasts as this only illustrates what the different inputs are in SFINCS. The evaluation of the 

different forecasts against the ERA5 reanalysis data provided a quantitative overview of the 

input data used in the created modelling chain. The findings of the evaluation mainly present 

its potential in the joint use of deterministic and probabilistic forecasts. Besides, it addresses 

the added value of ensembles since they describe the uncertainty of weather forecasting. Several 

studies have already addressed the importance of using ensemble forecast inside risk modelling 

(e.g. Dawkins et al., 2023; Teja et al., 2023). This study indicates that the most extreme 

percentiles together with the control forecasts caused the best model performances where 

additional uncertainties are incorporated. This finding corresponds with several studies (e.g. 

Busker et al., 2025; Najafi et al., 2024). 

Furthermore, the use of a full gaussian grid could have led to shifts in local rainfall intensities 

which in the end could have affected the flood extents downstream. 

In the SFINCS model the missing structures caused the multiple false alarms more downstream 

in the estuary of the Geul. This affected the evaluation of the flood maps and including these 

structures could have a positive influence on the reliability of the forecasted flood extents. 

Additionally, Figure 31 already presented an increased fit (CSI > 0.7) of the modelled extent 

for the municipality of Valkenburg (where the downstream parts were not included).  Moreover, 

apart from the limitations inside the used observations for the water depth evaluation, the 

inclusion of water structures could also have a positive influence on the results. For example, 

strange water depths are simulated in the ends of the tributaries due to the absence of water 

infrastructure such as culverts. (e.g. Figure C.3). As a result, the simulated flood depths within 

this study show high deviations compared to the observed flood depths (Figures 26,27, 32, and 

F.2). The errors within the 6-digit postal code areas are not negligible with on average a 

weighted MAE error of 0.5 m and a RMSE 0.72 m for the entire catchment (Figure 27). In 
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addition, in Valkenburg (Figure 32) the errors are on average 0.63 m and 0.85 m and therefore 

need reflection. 

To put the flood map evaluation results in perspective, the CSI index and the RMSE values 

obtained in this study ranged from approximately 0.5 (for the entire catchment in Figure 25) to 

0.8 (for Valkenburg in Figure 31) for the CSI index. Regarding the weighted 6-digit postal code 

RMSE values, the values ranged from 0.6 m (for the entire catchment in Figure 27) to 0.95 m 

(for Valkenburg in Figure 32). These values fall within the range of results reported in several 

other studies (e.g. Bentivoglio et al., 2023; Bernhofen et al., 2018; Woo et al., 2025). This 

comparison indicates that the developed forecasting framework performs within a realistic and 

acceptable range and shows its potential, while there is still room for improvements. Therefore, 

the limitations in particularly for the simulated flood depths and the extent in the estuary must 

be acknowledged. These two findings have the greatest uncertainty which could impact the 

entire performance of GEB. 

The findings of this study demonstrate that the GEB framework can simulate reliable flood 

extents and estimate building-level impacts using ensemble forecasts. Beyond the presented 

case study, the modular structure of the GEB framework offers a strong potential for the 

transferability to other catchments (J. A. De Bruijn et al., 2023). Compared to established 

operational systems like Delft-FEWS (Flood Early Warning Systems), GloFAS (Global flood 

Awareness Systems), and Delft-FIAT (Flood Impact Assessment Tool), GEB offers a more 

modular and open-source alternative where hydrodynamic modelling is linked with exposure 

and vulnerability analysis. While FEWS is a global established real-time operational 

hydrological forecasting system (e.g. Chowdhury et al., 2022; Deltares, 2025c) and FIAT an 

established operational system for estimating flood impacts (Deltares, 2025d; Nederhoff et al., 

2024). FIAT uses a similar approach in estimating the impacts, this shows that this methodology 

is already embedded in operational workflows under different climate zones and for different 

hydrological triggers. Unlike FEWS and FIAT, is GEB not yet embedded in such operational 

systems. However, this study highlights the potential of GEB for extending forecasting and 

impact tools in one framework what goes beyond existing separated systems. In addition, the 

validation of the GEB framework across different catchments must be emphasised before it can 

be used in operational services and before it is equivalent in status with the existing operational 

services. 

6.3 Recommendations  
This section provides suggestions for further investigations for the developed IBFFWS chain 

in the Geul catchment. First, general academical recommendations and further research 

regarding the methodology are given. Secondly, the practical recommendations are provided 

for the JCAR ATRACE program, IVM, Deltares, and the water authorities in the Geul 

catchment. 

6.3.1 General recommendations and further research 

Based on the identified limitations and implications, the following recommendations are 

proposed to guide future academic research. Future studies should test the GEB framework in 

a variety of catchments globally to examine its transferability across differences in catchment 
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size, hydrological triggers and climates. Simultaneously, the components of the framework 

should be benchmarked against established modelling systems like FEWS, FIAT or GloFAS. 

Moreover, research should further investigate the representation of hydraulic structures such as 

culverts and siphons in hydrodynamic models to improve flood map accuracy. Moreover, the 

facilities included in this study just show the potential of what can be included inside an impact-

based assessment on a building level. This study forms a first concept of the possibilities where 

it is recommended to elaborate the vulnerability curves for critical facilities such as fire stations 

to improve the accuracy of the impact estimates for the critical facilities in catchments. Lastly, 

translating the impact-based forecasts into early action it is recommended to further elaborate 

this chain by connection real-time decision tools such as agent-based models to enhance the 

response and communication on the ground. 

6.3.2 Recommendations for practical & operational implementations 

From a practical perspective, this study highlights several key recommendations for future flood 

preparedness in the Geul catchment. First, to improve the developed chain it is recommended 

the integration of local hydraulic water structures inside the model to enhance the accuracy and 

reliability of the simulated flood maps. Additionally, it is recommended to refine the evaluation 

of the flood maps with calibrated flood maps from other sources such as other validated model 

simulations and remote sensing data to improve the accuracy of the flood maps.  Moreover, the 

use of ensemble percentile forecasts is proved valuable in communicating uncertainty in both 

flood extents and impacts estimations. However, since the generation of flood maps for entire 

ensemble forecasts is not included in the study due to the required computational time. It is 

recommended to further investigate the description of the uncertainty across the model chain 

(with the right octahedral gaussian grid type) and how the outcomes differ compared to the 

outcomes of the percentile approach (with the full gaussian grid type). In the scope of this study, 

it has not been ruled out that the percentile approach deliver different outcomes compared to 

the entire ensemble. In addition, it will be an added value if the findings of this study can be 

compared with similar findings based on the usage of different meteorological services such as 

the DWD or KNMI. Subsequently, it is recommended to include more critical facilities inside 

the analysis since for example the energy sector and industries are not included right now. 

Furthermore, it is advised to evaluate the simulated impact estimates with the SSM standard 

described by Van Den Braak et al. (2020) to improve the reliability of the impact estimates. 

Finally, it is recommended to further clarify the needs in a multi-disciplinary stakeholder 

analysis to translate the impacts in effective measures on the ground. A new objective could 

thus be that these study findings lead to activation in the region with the different stakeholders 

engaging in a conversation about these results. 
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7. Conclusion 
This study investigated the development of an impact-based flood forecasting system for the 

Geul catchment where data of the 2021 flood event has been used to evaluate the outcomes of 

the model chain. By answering the formulated sub question the chain is developed, whereafter 

an answer is given to the main research question. 

RQ1: How well do historic operational ensemble and deterministic forecasts relate to the 

observed precipitation patterns and totals of the July 2021 flood event, compared to ERA5 

reanalysis data? 

The historic operational ECMWF forecasts do not reproduce the patterns of the ERA5 

reanalysis data since the evaluation reveals meaningful differences in terms of spatial 

distribution and intensity. These differences do not indicate lower quality but rather highlight 

the differences in forecast behaviour. The control forecast, with a deterministic character, often 

deviates from both the ensemble spread and ERA5 prediction, though it could capture extreme 

values which are missed in the ensemble percentile spread. In contrast, ensemble forecasts 

provide valuable insights into the forecast uncertainty. As demonstrated in the study and 

supported in the discussion, the combination of deterministic control forecasts with ensemble 

forecasts reinforces the interpretation of the probabilities in rainfall. Moreover, it is important 

to recognize that ERA5 is a reanalysis product which is in fact a reconstruction. Although it 

functioned as a reference in the study, ERA5 cannot be used in real-time operational decision-

making. 

RQ2: What is the quality of flood forecasts from SFINCS for the July 2021 event at multiple 

lead times and how do variations in forecast data affect the outcomes of the SFINCS model? 

The evaluation for the quality of the SFINCS flood forecasts for the July 2021 event shows that 

the chain demonstrates a moderate performance for flood extents at the catchment scale with 

the highest accuracy observed for the higher percentiles (P90 & P95) and the control forecasts 

(CSI ~0.6). At the local scale in the municipality of Valkenburg, the performance has further 

improved (CSI > 0.7). Across all the forecasts, the simulated flood extents often exceed the 

ERA5 extent, which is influenced by higher forecasted rainfall volumes. The ensemble 

forecasts presented a moderate increase in flood extent across shorter lead times with a 

decreasing spread. This indicated the reduction in uncertainty closer to the event. In addition, 

The higher percentiles (P75-P95) and control forecasts constantly outperformed the lower 

percentiles (P25-P50) in detecting observed extents. 

In contrast, the quality of the flood depth performance remained limited across all lead times 

and forecast types. The model overestimated water depths in both postal code detail levels (PC4 

& PC6). With the more detailed PC6 areas the model overestimated the water depth even more 

particularly in urban areas, leading to high MAE (~0.5m), RMSE (~0.72m), and NSE near or 

below zero across the catchment. These deviations are caused by the absence of hydraulic 

structures (e.g. culverts, weirs, and siphons), which also affected the simulated extents due to 

the large number of false alarms in the estuary of the river. Additionally, the used survey data 

also introduced uncertainty due to its limited spatial accuracy of the reported water levels. 
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Although the weighted performance metrics improved the overall performance for both postal 

code detail levels, the flood depth simulation remained of insufficient quality.  

Ultimately, these results highlight the joint strength of combining ensemble forecasts with 

control forecasts since they both proved capable in predicting the flood extents, though the 28h 

lead time of the control forecast is identified as an outlier.  The joint strength certainly applies 

for the in-depth evaluation in Valkenburg showing a good performance quality. 

RQ3: How does the predicted flood impact vary across different rainfall forecasts and lead 

times, and what is the added value of using ensemble-based predictions for estimating local 

damages per function and area? 

The predicted flood impacts show a clear variation across the several forecast types and lead 

times, here the ensemble-based predictions offering a significant added-value in estimating the 

spatially spread of distributed damages and probabilities. An increasing trend is observed as 

lead time decreases and percentile increases where the affected buildings is reflected in the 

spatial flood extents.  

Moreover, the control forecast frequently deviates from both the ERA5 and ensemble spread, 

which underlines its deterministic nature and potential to produce outlier scenarios. However, 

it still needs to be considered since it may capture extremes that are not represented in the 

ensemble percentiles. 

At the building level, the ensemble forecasts constantly predict flood depths several days before 

the event with declining uncertainty closer to the event. This provides insights into the probable 

damage ratios per asset. Nevertheless, the absence of specific vulnerability curves for critical 

facilities limits the depth of impact interpretation. Apart from the probability of flooding per 

facility or building, specific damage estimates for these facilities are therefore not made in this 

study. 

In general, the impact findings show that ensemble-based impact forecasting enables more 

nuanced, probabilistic and location specific flood risk assessments which are in the end crucial 

for early action and early warning applications. 

How could Impact-based Forecasts (IbF) from the hydrodynamic SFINCS model have been 

used to trigger effective early-warnings and actions, incorporating associated uncertainty for 

the 2021 flood in the Geul basin?  

In conclusion, this thesis primarily shows that Impact-based forecasting (IbF) systems 

generated with the SFINCS model could have supported earlier and more informed warnings 

and actions for the 2021 flood in the Geul catchment. It is then necessary that the model is 

combined with ensemble precipitation forecasts. By integrating forecast uncertainty into flood 

extent and impact simulations at both catchment and building level, the developed chain offers 

actionable insights up to 88 hours in advance (>3 days). In particular, critical facilities and high 

risk urban areas like Valkenburg can be supported with timely actions and targeted response. 

This underlines the value of the developed chain where it forms an added value in assisting the  

decision-making in flood risk management. However, this developed chain is not transferable 
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yet to all types of flooding (hydrological triggers) and need to be validated in other catchments 

and benchmarked against existing frameworks. The greatest uncertainty in the chain lies in the 

simulation of flood depths and the absence of water structures since these caused the highest 

errors in the chain. These uncertainties must be refined to improve the reliability of the chain. 

Apart from the existing uncertainties inside the forecasted depths, this study provides a 

promising proof-of-concept for operationalizing IBFFWS. This study marks an important step 

toward more precautionary and location-specific flood risk management. 
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Appendices 

Appendix A: API request to download ECMWF forecast data 
Table A: Outlined parameters for the API request to download rainfall data with the consistent parameter settings. 

API PARAMETERS CONTROL FORECASTS PERTURBED FORECASTS 

CLASS ‘od’ ‘od’ 

DATE 2021-07-11 till 2021-07-14 2021-07-11 till 2021-07-14 

EXPVER 1 1 

LEVTYPE ‘sfc’ ‘sfc’ 

PARAM 228.128 228.128 

STEP 0/to/90/BY/1 & 

90/to/120/BY/3 

0/to/90/BY/1 & 

90/to/120/BY/3 

STREAM ‘enfo’ ‘enfo’ 

NUMBER - ‘1/to/50’ 

TIME [‘00’,’12’] [‘00’,’12’] 

TYPE ‘cf’ ‘pf’ 

GRID ‘F640’ ‘F640’ 

AREA ‘52.5/3.5/49/8’ ‘52.5/3.5/49/8’ 

 

Appendix B: Numerical equations inside the SFINCS model 
Section 4.2.2 focused on the structure of the model. Another key aspect is the methodology of 

how the model solves the hydrodynamic processes.  First, the model calculates the volumetric 

flow rate between adjacent grid cells for the next time step for each dimension (x or y) (Equation 

1). 

             𝑞𝑥
𝑡+∆𝑡 =

𝑞𝑥
𝑡 −(𝑔ℎ𝑥

𝑡 ∆𝑧
∆𝑥

 + 𝑎𝑑𝑣𝑥 −
 𝜏𝑤,𝑥
𝜌𝑤

)∆𝑡

(1+
(𝑔∆𝑡𝑛2𝑞𝑥

𝑡 )

ℎ𝑥
𝑡

7
3

)

                           (1) 

Equation 1 describes the volumetric flow rate for the x dimension in the next time step, where 

𝑞𝑥
𝑡  is the volumetric flow rate in the previous timestep t, ℎ𝑥

𝑡  defines the average water depth of 

the two adjacent cells in the previous timestep, ∆𝑧  is the difference in waterlevel between the 

adjacent cells, and the gravitational constant and the manning friction are given by g an n.  

Moreover, two additional terms are incorporated within the momentum equation of Saint- 

Vernant in Equation 1. The first term is the wind drag term 
 𝜏𝑤,𝑥

𝜌𝑤
, this term simulates locally 

generated wind set-up based on the wind shear stress 𝜏𝑤,𝑥 and the water density 𝜌𝑤. In addition, 

the wind shear stress is computed as a function of a wind drag coefficient 𝐶𝑑, the air density 

𝜌𝑎, the wind speed in the x-dimension 𝑢𝑤,𝑥 and in the y-dimension 𝑢𝑤,𝑦 (Equation 2). In the 

model the wind stress is reduced to zero in water depths less than 0.25 meter, to improve the 

numerical stability of the model. 
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                                           𝜏𝑤,𝑥 =  𝐶𝑑𝜌𝑎𝑢𝑤,𝑥√𝑢𝑤,𝑥
2 +  𝑢𝑤,𝑦

2                            (2) 

The second term that is included in the momentum equation is the advection term 𝑎𝑑𝑣𝑥, which 

is divided into two parts (Equation 3). These two parts are related to the volumetric flow rates 

𝑞𝑥 and 𝑞𝑥𝑞𝑦 over the x- and y-dimensions and are also dependent on the grid size. 

                                                    𝑎𝑑𝑣𝑥 =  𝑎𝑑𝑣𝑥,1 +  𝑎𝑑𝑣𝑥,2                (3) 

The first part of the advection term 𝑎𝑑𝑣𝑥,1 calculates the difference between the quotients of 

the squared flow rate of the current grid cell (q) and the water depth (h) for the adjacent grid 

cells in the x-dimension. The calculated difference is divided by the grid size in the x dimension. 

The equation is determined based on the state of flow rate and water depth in the current and 

previous time step (Equation 4a and 4b) 

𝑓𝑜𝑟 𝑞𝑥,𝑚,𝑛
𝑡 > 0:  𝑎𝑑𝑣𝑥,1 =  

(
(𝑞𝑥,𝑚,𝑛

𝑡 )
2

ℎ𝑥,𝑚,𝑛
𝑡 − 

(𝑞𝑥,𝑚−1,𝑛
𝑡 )

2

ℎ𝑥,𝑚−1,𝑛
𝑡 )

∆𝑥
                                      (4a)                             

𝑓𝑜𝑟 𝑞𝑥,𝑚,𝑛
𝑡−∆𝑡 < 0:  𝑎𝑑𝑣𝑥,1 =  

(
(𝑞𝑥,𝑚+1,𝑛

𝑡 )
2

ℎ𝑥,𝑚+1,𝑛
𝑡 − 

(𝑞𝑥,𝑚,𝑛
𝑡 )

2

ℎ𝑥,𝑚,𝑛
𝑡 )

∆𝑥
                                (4b) 

The second sub equation of the advection term 𝑎𝑑𝑣𝑥,2 is similar to the Equations 4a and 4b but 

focuses on the difference over the y-dimension. In this equation, also the cells diagonal to the 

current cell are taken into account (m+1 & n+1). This part is not conditioned based on the 

current and previous timesteps (Equation 5). 

𝑎𝑑𝑣𝑥,2 =  

(

1
2

[𝑞𝑥,𝑚,𝑛
𝑡 + 𝑞𝑥,𝑚,𝑛+1

𝑡 ]
1
2

[𝑞𝑦,𝑚+1,𝑛
𝑡 +𝑞𝑦,𝑚,𝑛

𝑡 ]

1
2

[ℎ𝑥,𝑚,𝑛
𝑡 +ℎ𝑥,𝑚,𝑛+1

𝑡 ]
 − 

1
2

[𝑞𝑥,𝑚,𝑛
𝑡 + 𝑞𝑥,𝑚,𝑛−1

𝑡 ]
1
2

[𝑞𝑦,𝑚+1,𝑛−1
𝑡 +𝑞𝑦,𝑚,𝑛−1

𝑡 ]

1
2

[ℎ𝑥,𝑚,𝑛
𝑡 +ℎ𝑥,𝑚,𝑛−1

𝑡 ]
)

∆𝑦
         (5) 

When the components are calculated Equation 3 can be solved and implemented in Equation 1 

together with the determined wind drag term. Solving Equation 1 per timestep results in the 

determination of the fluxes through the 2D spatial grid. 

After the water depth and discharges in x- and y-directions are computed, the water levels ζ 

inside the cells are updated based on the current water level and the change in flow rate 

(Equation 6). 

                       ζ𝑚,𝑛
𝑡+∆𝑡 = ζ𝑚,𝑛

𝑡 + (
(q𝑥,𝑚−1,𝑛

𝑡+∆𝑡 − q𝑥,𝑚,𝑛
𝑡+∆𝑡 )

∆𝑥
+  

(q𝑦,𝑚,𝑛−1
𝑡+∆𝑡 − q𝑦,𝑚,𝑛

𝑡+∆𝑡 )

∆𝑦
+  𝑆𝑚,𝑛) ∆𝑡                 (6) 

In Equation 6 a source term 𝑆𝑚,𝑛 is incorporated to represent an additional flux such as an 

infiltration rate, precipitation rate, or a discharge from a user-defined point source. Additionally, 

Equation 6 is the 2D version of the continuity equation. Moreover, A flow depth limiter is 

incorporated in the model to distinguish between dry and wet grid cells. The limit can be altered 

dependent on the type of flood. As a result, after the limit of a grid cell is reached, the cell is 

marked as wet. 
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Furthermore, the  timestep ∆𝑡 is determined dynamically based on the Courant-Fiedrich-Lewy 

(CFL) condition. This condition ensures that the computation of the equations does not move 

further than one spatial grid point per time step. This is important because the equations attempt 

to calculate values in next time steps that has not yet arrived at the current timestep, which can 

lead to numerical instability (Courant et al., 1928). By including the CFL-condition, numerical 

instability in the model is minimized (Equation 7). 

                                            ∆𝑡 =  𝛼
∆𝑥

√𝑔ℎ𝑚𝑎𝑥
                                    (7) 

The timestep in the model cannot be greater than the calculated timestep of Equation 7. When 

this is the case, it results in numerical instability what will cause inaccurate results. 

Ultimately, the seven equations are applied for each time step and in each grid cell. As a result, 

the hydrodynamical processes are simulated. 

Boundary conditions: 

Next to the simulation of hydrodynamic processes, SFINCS defines open boundary conditions, 

which have a weakly reflective and absorbing character. This character allows outgoing fluxes 

to leave the computational grid without influencing incoming fluxes at the same boundary (Van 

Dongeren and Svendsen, 1997). Boundary fluxes are calculated at the velocity points of grid 

cells, where h is the total water depth at the boundary, 𝑢̅ the mean velocity, and ζ𝑖 is the water 

level in the first regular grid cell inside the spatial grid (Equation 8).  

                               𝑞 = ℎ (2√
𝑔

ℎ
 (ζ − ζ0) − √

𝑔

ℎ
(ζ𝑖 − ζ0) + 𝑢̅)                         (8) 
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Appendix C: Additional plots for the issued rainfall forecast 

evaluation 

Figure C.1: A comparison of the maximum cumulative rainfall over the entire Geul catchment between the processed control 

(green line) and ensemble percentile forecasts (blue spread) of the ECMWF and the ERA5 observations (black line) for various 

initialization dates between July 11 and 14 2021. 

Figure C.2: The spatial distribution of verification metrics for the ensemble percentile forecasts across all lead times, specifically CRPS, MAE, 

Bias, Standard deviations in mm per hour. 
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Figure C.3: The spatial distribution of verification metrics for the control forecasts across all lead times, specifically MAE, Bias in mm per hour. 

Figure C.4: Boxplots of the Fraction Skill Score (FSS) for ensemble percentile forecasts and control forecasts across 

different lead times. The plots display the range of minimum (light blue), median (blue), and maximum (dark blue) FSS 

values per lead time dependent on the rainfall intensity thresholds of 0.5, 1, 3, and 4 mm/h. 
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Appendix D: Cross sectional analysis for improving the SFINCS 

output 
In this phase, two key adjustments were made to improve the outcomes of SFINCS. First, the 

river network was refined to better represent the flow pathways. Second, a projection mismatch 

was identified and corrected, which previously led to unrealistic flood maps due to spatial 

misalignment of input data and local impoundments because of present waterworks. 

In the initial model configuration, the river network only consisted of the primary branches of 

the Geul river. To improve the channel network, smaller tributaries were delineated and 

integrated using QGIS to ensure a continuous flow path and a more accurate river bathymetry 

(derived from Bril et al. (2025)). This refinement included smoothing of right-angle turns. 

Figure D.1 shows the transition of the river network in the model.  

Overall, this refinement improved the accuracy of the simulated flood extent and depth, 

reducing extreme and unrealistic water levels from approximately +20 meters to water depths 

of twelve meters. Smoothing the tributaries was crucial to prevent artificial impoundments 

between grid cells. However, following the implementation of the updated river network, a 

remarkable flooding pattern was observed, as illustrated in Figure D.2. 

Figure D.1: The transition of the river network within the SFINCS model by elaborating the tributaries of the Geul River. 
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This flooding pattern occurred at the highest elevation points in the cross section, making it 

remarkable. Ultimately, the pattern was caused by a mismatch in the projection of the model as 

the line was located at the boundaries of the coordinate system Amersfoort RD new. By 

specifying the coordinate system the misprojection was 

solved and the strange line disappeared.  

Subsequently, a cross sectional analysis is conducted in 

order to ensure that the simulated flood depths are more 

realistic, as presented in Figure D.4. Looking at the figure, 

the flood depths are more realistic ranging from 0.15 

meters till 2.5 meters. However, an exception is the cross 

section at Plombieres, at the cross section the water depth 

ranges till 16 meters indicating that there are single cells 

along the cross section with these flood depths. It appears 

that at the end of the tributaries the model simulates local 

impoundments. These impoundments are caused by 

infrastructure where in reality waterworks such as culverts provide this runoff. Figure D.3 

illustrates an example of a local impoundment. Interestingly, when the river network is removed 

Figure D.2: A cross-sectional analysis of a strange line of flooding around the Dutch border with water depths of over 18 

meters. The blue and green lines represent two cross sections in two directions over the grid cells. In the figure the profile of 

the water depth, DEM and DEP is visualized where the location of the cross sections is specified at the left from the line plots. 

The red line represents the location of the maximum forecasted flood depth in the catchment. 

Figure D.3: An example of a local 

impoundment caused by (in this case) 

infrastructure, with white representing the 

water depths of approximate 17 meters. 



Appendix D 

 

103 

 

at the location of the impoundment, the impoundment does not occur. As a result, the unrealistic 

water levels were identified and the river network was shortened. For the example in Figure 

D.3, it meant that the river network was shortened till the road to remove the blocking effect. 

 

 

 

Figure D.4: A cross-sectional analysis along the primary branch of the Geul River. The blue and green lines represent two cross sections in two directions over 

the grid cells. In the figure the profile of the water depth, DEM and DEP is visualized where the location of the cross sections is specified at the left from the line 

plots. The red line represents the location of the maximum forecasted flood depth in the catchment. 



 

104 

 

Appendix E: Additional plots for the Impact analysis 

 

Figure E.1: The total damage per function across the forecast types and lead times with green 

representing the ERA5 data, red the control forecast, and the grey boxplots the ensemble percentile 

forecasts. 
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Figure E.2: The total number of buildings hit across the forecast types and lead times with green representing the ERA5 data, 

red the control forecast, and the grey boxplots the ensemble percentile forecasts. 

Figure E.3: The median damage per building across the forecast types and lead times with green representing the ERA5 data, 

red the control forecast, and the grey boxplots the ensemble percentile forecasts. Here, the number of buildings with damages 

above 0 €. 
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Appendix F: Additional plots for the in-depth Impact analysis in 

Valkenburg 

 

 

Figure F.2: The weighted spatial evaluation of the simulated flood depths for the Valkenburg municipality with the 95th 

percentile ensemble forecast of the 88h lead time against the observations from the survey of Endendijk et al. (2023). This 

evaluation is based on the aggregation of the flood depths 6-digit postal code area detail level.  

Figure F.1: Spatial evaluation of the simulated flood extent inside the Valkenburg municipality for the 95th 

percentile ensemble forecast with 88-hour lead time as input against the observed flood extent of Slager et al. 

(2021). The hits are represented in light green, the false alarms in orange, the misses in red, the measured 

area in light blue, and the total flood extent in black. 
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Figure F.3: The total damages across the municipality of Valkenburg displayed for each forecast type and lead time. The 

total damages include the damage to forests, agriculture, infrastructure and building structures, which are derived from the 

vulnerability curves. The control forecast is represented in Red, the ERA5 data in green, and the ensemble percentile 

forecasts with the grey boxplots. 
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